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Abstract

Alzheimer’s Disease (AD) is a neurodegenerative disorder affecting up to one third of individuals reaching the age of
80. Different integrated responses exist in the brain to detect oxidative stress which is controlled by several genes
termed Vitagenes. Vitagenes encode for cytoprotective heat shock proteins (Hsp), as well as thioredoxin, sirtuins and
uncouple proteins (UCPs). In the present study we evaluate stress response mechanisms in plasma and lymphocytes of
AD patients, as compared to controls, in order to provide evidence of an imbalance of oxidant/antioxidant mechanisms
and oxidative damage in AD patients and the possible protective role of vitagenes.
We found that the levels of Sirt-1 and Sirt-2 in AD lymphocytes were significantly higher than in control subjects.
Interestingly, analysis of plasma showed in AD patients increased expression of Trx, a finding associated with reduced
expression of UCP1, as compared to control group.
This finding can open up new neuroprotective strategies, as molecules inducing this defense mechanisms can
represent a therapeutic target to minimize the deleterious consequences associated to oxidative stress, such as in brain
aging and neurodegenerative disorders.
Introduction
Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder and represents the most common cause of
dementia in the elderly, accounting for 50-60% of all cases
in Western world [1,2]. The prevalence rates for AD rise
exponentially with age, increasing markedly after 65 years.
AD is characterized by cognitive decline beginning usually
with impairment of episodic memory, involving progres-
sively all cognitive functions in the late stage [3]. Although
some cases are familial, sporadic AD is more common,
affecting more than 15 million people worldwide [4].
The pathological hallmarks of AD are amyloid plaques,

containing amyloid-β peptide, derived from the trans-
mebrane amyloid precursor protein, and neurofibrillary
tangles, composed of hyperphosforylated tau protein, in
the medial temporal lobe structures and cortical areas
of the brain together with neuronal death and synapses
loss [5,6]. Many approaches have been undertaken to
understand AD, including Aβ aggregation, but the
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heterogeneity of the etiologic factors makes it difficult
to define the clinically most important factors deter-
mining the onset and progression of the disease [7].
Accumulation of Aβ characterizes AD as a protein
misfolding disease, suggesting a pathogenic role for
oxidative stress in protein clearance defect by the
ubiquitin-proteasome system [8,9]. In particular, mis-
folded Aβ is considered to be the key mediator of cellu-
lar oxidative stress in AD [10], and different evidences
exist which indicate that oxidative stress is central to
neurodegeneration in AD [11,12]. Consistently, increas-
ing evidence indicates that factors such as oxidative
stress and disturbed protein metabolism and their inter-
action in a vicious cycle are central to AD patho-
genesis [13].
It is well known that living cells are continually chal-

lenged by conditions which cause acute or chronic
stress. To adapt to environmental changes and survive
different types of injuries, eukaryotic cells have evolved
networks of different responses which detect and con-
trol diverse forms of stress [14]. One of these responses,
known as the heat shock response, has attracted a great
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interest as a universal fundamental mechanism neces-
sary for cell survival under a wide variety of toxic condi-
tions [15-17]. Consistent with this, integrated survival
responses exist in the brain, which are under control of
redox regulated genes, called vitagenes, including heat
shock proteins (Hsps), Sirtuins and Thioredoxin, that
actively operate in detecting and controlling diverse
forms of stress and neuronal injuries [17-19].
Sirtuins are a family of histone deacetylases that, in

humans, includes at least seven members (silent infor-
mation regulator two: SIRT 1-7) that exhibit different
cellular and subcellular localizations and substrate spec-
ificities [20]. The best studied sirtuin is SIRT-1, an
NAD + dependent enzyme that deacetylates several
different protein substrates involved in the regulation of
cellular energy metabolism and redox state, thereby influ-
encing cell survival and plasticity [21-24]. Thioredoxin
(Trx), is a major redox control system, consisting of a 12
kD a redox active protein Trx, and a homodimeric seleno-
protein called thioredoxin reductase (TrxR1). TrxR1 is a
flavoprotein that catalyzes the NADPH-dependent reduc-
tion of oxidized thioredoxin protein. It is usually located
in the cytosol, but it translocates into the nucleus in re-
sponse to various stimuli associated with oxidative stress.
Trx, thus, plays a central role in protecting against oxida-
tive stress [25,26].
Uncoupling proteins (UCPs) are members of the super

family of anion carrier proteins located in the inner mem-
brane of mitochondria. These proteins have several hy-
pothesized functions including thermogenesis in certain
tissues, protection from reactive oxygen species (ROS),
neuroprotection and export of fatty acids. UCPs influence
the production of mitochondrial reactive oxygen species.
In general, the available data indicate that UCP activity re-
sults in decreased superoxide and hydrogen peroxide
production [27,28]. In view of our previous finding demo-
nstrating that in the brain and in peripheral blood signifi-
cant changes in thiol status are associated with increased
content of both protein and lipid oxidation markers, in
the present study we measured the expression levels of
stress responsive proteins such as sirtuin, thioredoxin and
UCP protein in the blood of AD patients as compared to
age-matched normal subjects to understand the potential
role of these protective mechanism in the pathogenesis of
AD pathology.
Table 1 Clinical and demographic data of AD patients and co

Number of
subjects

Age
(mean ± SD)

Gender
(F/M)

Disea
(mean

Patients 30 74.6 ± 4.28 17/13 2.7 ± 1

Controls 10 69.3 ± 5.77 5/5

MMSE: Mini Mental State Examination (normal values: >24/30).
ADL: Activity Daily Living (normal values: 6/6).
IADL: Instrumental Activity of Daily Living (normal values: 8/8).
Materials and methods
Patients
The study was conducted according to guidelines of
local Ethics Committee, and informed consent was
obtained from all patients. Thirty patients (13 men and
17 women), with an age range of 69-81 years were en-
rolled in the study. All patients had progressive cogni-
tive and memory impairment for at least 12 months and
were diagnosed as suffering of probable AD, according
to the criteria of the National Institute of Neurological
and communicative Disorder and Stroke Alzheimer
Disease and Related Disorder Association (NINCDS-
ADRADA) (McKhann G, Drachman D, Folstein M,
Katzman R, Price D, et al. Clinical diagnosis of
Alzheimer’s disease: report of the NINCDS-ADRDA
Work Group under the auspices of Department of
Health and Human Services Task Force on Alzheimer’s
Disease. Neurology. 1984;34:939-944.). The evaluation
of the stage of dementia was assessed by the Mini Men-
tal State Examination (MMSE) (“Mini-mental state”. A
practical method for grading the cognitive state of pa-
tients for the clinician. Folstein MF, Folstein SE, Mc
Hugh PR. J Psychiatr Res.1975 Nov;12 (3):189-98). Sta-
tus of basic and instrumental activities of daily living
(Activity of Daily Living, ADL, Instrumental Activity of
Daily Living, IADL) was also assessed. None of our pa-
tients had a history of major psychiatric illness or other
neurological disorders (i.e. Parkinson’s disease, stroke,
dementia, multiple sclerosis, etc.), history of head trauma
or epilepsy, acute or chronic medical illness, endocrino-
pathies or vitamin B deficiency affecting cognitive func-
tions, alcohol or drug abuse, and conditions precluding
MRI or CT execution. Three patients were classified as
mild and 7 as moderate. All patients were under acetyl-
cholinesterase inhibitor (AchE-I) medication. Computed
tomography (CT) or magnetic resonance imaging (MRI)
scan showed widespread cortical atrophy in most patients.
In addition ten subjects (5 men and 5 women) with an age
range of 60-79 years were studied as a control group. Con-
trols showed no impairment in neuropsychological evalu-
ation. Laboratory and neuroimaging tests were normal.
The exclusion criteria of the control subjects were in line
with those of patients. Clinicodemographic characteristics
and neuropsychological test scores of patients and control
subjects are shown in Table 1.
ntrol subjects

se duration
± SD)

MMSE
(mean ± SD)

ADL
(mean ± SD)

IADL
(mean ± SD)

.7 17.5 ± 3.8 4.9 ± 1.2 3.7 ± 2.9

27.9 ± 2 5.6 ± 0.5 7.9 ± 0.3
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Sampling
Blood was collected from controls and patients by veni-
puncture from an antecubital vein into tubes containing
EDTA as an anticoagulant. Immediately after sampling,
1 ml the blood was centrifuged at 3000 × g for 10 min at
4°C to separate plasma from red blood cells and 4 mL
were utilized for lymphocytes purification. Lymphocytes
from peripheral blood were purified using the Ficoll Paque
System following the procedure provided by the manufac-
turer (GE Healthcare, Piscataway, NJ, USA).

Lymphocyte purification
Lymphocytes from peripheral blood were purified by
using the Ficoll Paque System following the proce-
dure provided by the manufacturer (GE Healthcare,
Piscataway, NJ, USA).

Western blot analysis
Trx, Sirt-1, Sirt-2 were evaluated by Western blot analyses.
Plasma samples were ready to use, while the lymphocyte
pellet was homogenized (0,1 M NaCl, 0,01 M Tris Cl
pH 7,6, 0,001 M EDTA pH 8, 100 μg/ml PMSF) and
centrifuged at 10,000 × g for 10 min and the supernatant
was used for analysis after dosage of proteins.
Equal concentrations of protein extracted for each sam-

ple (40 μg) were separated on a polyacrylamide mini gels
precasting 4-20% (cod NB10420 NuSept Ltd Australia)
using a miniprotean apparatus (BIO-RAD). Before being
loaded on the gel, samples were boiled for 3 minutes in
sample buffer (containing 40 mM Tris–HCl pH 7.4, 2.5%
SDS, 5% 2-mercaptoethanol, 5% glycerol, 0.025 mg/ml of
bromophenol blue). The proteins were transferred onto
nitrocellulose membrane (0.45 μΜ) (BIO-RAD Hercules,
CA, USA) in transfer buffer containing (0.05% di SDS,
25 mM di Tris, 192 mM glycine and 20% v/v methanol)
using a miniprotean apparatus (BIO-RAD).
The transfer of the proteins on the nitrocellulose mem-

brane was confirmed by staining with Ponceau Red which
was then removed by 3 washes in PBS (phosphate buffered
saline) for 5 min. each. The membranes were then incu-
bated for 1 hour at room temperature in 20 mM Tris
pH 7.4, 150 mM NaCl and Tween 20 (TBS-T) containing
2% milk powder and incubated with appropriate primary
antibodies, namely anti-Trx, anti Sirt-1, anti Sirt-2, anti
UCP1 rabbit polyclonal antibody (Santa Cruz Biotech.
Inc., Santa Cruz, CA, USA), overnight at 4°C in TBS-T.
The same membrane was incubated with a goat poly-

clonal antibody anti-beta-actin (SC 1615 Santa Cruz Bio-
tech. Inc., CA, USA, dilution 1:1000) to verify that the
concentration of protein loaded in the gel was the same
in each sample.
Excess unbound antibodies were removed by 3 washes

are with TBS-T for 5 minutes. After incubation with pri-
mary antibody, the membranes were washed 3 times for
5 min. in TBS-T and then incubated for 1 h at room
temperature with the secondary polyclonal antibody
conjugated with horseradish peroxidase (dilution 1:500).
The membranes were then washed 3 times with TBS-T

for 5 minutes. Finally, the membranes were incubated for
3 minutes with SuperSignal chemiluminiscence detection
system kit (Cod 34080 Pierce Chemical Co, Rockford,
USA) to display the specific protein bands for each anti-
body. The immunoreactive bands were quantified by
capturing the luminescence signal emitted from the mem-
branes with the Gel Logic 2200 PRO (Bioscience) and ana-
lyzed with Molecular Imaging software for the complete
analysis of regions of interest for measuring expression ra-
tios. The molecular weight of proteins analyzed was deter-
mined using a standard curve prepared with protein
molecular weight.

Determination of protein
Samples protein concentrations were determined by the
bicinchoninic acid protein assay (Cod 23227 Pierce Pro-
tein Research Products, Rockford, IL 61101 U.S.A.)
according to the method described in Smith et al. [29]
and using bovine serum albumin as standard.

Statistical analysis
All results are expressed as means ± S.E.M. Each experi-
ment was performed, unless otherwise specified, in
triplicate. Data were analyzed by one-way ANOVA,
followed by inspection of all differences by Duncan’s
new multiple-range test. Differences were considered
significant at P < 0.05.

Results
Alzheimer’s disease (AD) is the most common form of
dementia and is characterized pathologically by senile
plaques, neurofibrillary tangles and cerebral amyloid
angiopathy [30-32]. Figure 1 reports brain MRI axial
T2 image showing cerebral atrophy in patient with
Alzheimer’s disease in comparison to a normal brain. Our
laboratory previously demonstrated in the brain as well as
in peripheral blood that oxidative and nitrosative stress
occur in AD patients, compared to normal subjects [33]
and that this can serve as a trigger for induction of the
heat shock response [18,34,35]. Therefore, we evaluated
the expression levels of Trx and Sirtuin in the plasma and
lymphocytes in control and in AD patients. Western blot
analysis of lymphocytes probed for Sirt-1 is reported in
Figure 2. Sirt-1 expression is significantly increased in AD
patients, compared to controls. In contrast to Sirt-1, ex-
pression levels of Sirt-2 measured in lymphocytes did not
show a significant increase in AD patients compared to
controls (Figure 3). As shown in Figure 4, analysis of lym-
phocytes in AD patients, compared to control group, re-
vealed also an increase in thioredoxin protein expression.



Figure 1 Brain MRI. Axial T2 images shows cerebral atrophy in patient with Alzheimer’s disease (A) and normal brain in control patient of same
age (B).
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Consistently to the observed changes in AD lymphocytes,
analysis of plasma in AD patients showed higher expres-
sion levels of Sirt-1 (Figure 5). Expression levels of Sirt-2
were also measured and results, reported in Figure 6, show
an increase in AD patients, which however was not statis-
tically significant, as compared to control group. As far as
we are concerned, this is the first evidence demonstrating
changes in SIRT-1 expression in AD, although at the mo-
ment we cannot exclude that this might not be a specific
alteration of this progressive inflammatory neurodegener-
ative disease associated with oxidative stress which has
emerged as a critical factor in AD. Interestingly, we inves-
tigated the expression of Trx and we found, in the plasma,
Figure 2 Sirtuin-1 (Sirt-1) protein levels in lymphocytes of AD and co
for Sirt-1 expression by Western blot. A) Densitometric evaluation: the bar
of 3 independent analyses. P≤ 0.05 vs control. B) A representative immuno
densitometric units; AD, Alzheimer’s disease; CTRL, control.
higher levels of Trx protein in AD patients compared with
the control group (Figure 7). Figure 8 shows a decreased
expression of UCP1 protein in plasma of AD patients
compared to controls. Analysis of lymphocytes in AD pa-
tients, compared to control group, did not allow to detect
measurable levels of this protein (data not shown).

Discussion
Alzheimer’s disease is a progressive disorder characterized
usually by early memory loss, however affecting all intel-
lectual functions in the late stage and leadind to complete
dependence for basic functions of life. The pathological
features of AD are a variable degree of cortical atrophy, in
ntrol subjects. Samples from control and AD patients were assayed
graph shows the values are expressed as mean standard error of mean
blot is shown. β-actin has been used as loading control. D.U.,



Figure 3 Sirtuin-2 (Sirt-2) protein levels in lymphocytes of AD and control subjects. Samples from control and AD patients were assayed
for Sirt-2 expression by Western blot. A) Densitometric evaluation: the bar graph shows the values are expressed as mean standard error of mean
of 3 independent analyses. B) A representative immunoblot is shown. β-actin has been used as loading control. D.U., densitometric units; AD,
Alzheimer’s disease; CTRL, control.
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the frontal, parietal, and temporal lobes (Figure 1). The
pathological lesions in AD include neurofibrillary tangles,
neurite, plaques, the central core of which is amyloid-β
peptide, derived from the transmembrane amyloid precur-
sor protein (APP), amyloid angiopathy [7,13]. AD brain
has been reported to be under oxidative stress that
Figure 4 Thioredoxin (Trx) protein levels in lymphocytes of AD and c
for Trx expression by Western blot. A) Densitometric evaluation: the bar gr
3 independent analyses. P ≤ 0.05 vs control. B) A representative immunoblo
densitometric units; AD, Alzheimer’s disease; CTRL, control.
may play an important role in the pathogenesis and
progression of AD [14,36,37]. Several lines of evidence
support a fundamental role for free radical mediated event
in the pathogenesis of the disease. Amyloid-β peptide
[1,2,4-8,10,11,14-27,30,33,34,36-51] has been shown to in-
duce protein oxidation in both in vitro and in vivo studies
ontrol subjects. Samples from control and AD subjects were assayed
aph shows the values are expressed as mean standard error of mean of
t is shown. β-actin has been used as loading control. D.U.,



Figure 5 Plasma levels of Sirtuin-1 (Sirt-1) in AD and control individuals. Samples from control and AD subjects were assayed for Sirt-1
expression by Western blot. A) Densitometric evaluation: the bar graph shows the values are expressed as mean standard error of mean of 3
independent analyses. P ≤ 0.05 vs control. B) A representative immunoblot is shown. β-actin has been used as loading control. D.U., densitometric
units; AD, Alzheimer’s disease; CTRL, control.

Figure 6 Plasma levels of Sirtuin-2 (Sirt-2) in AD and control individuals. Samples from control and AD subjects were assayed for Sirt-2
expression by Western blot. A) Densitometric evaluation: the bar graph shows the values are expressed as mean standard error of mean of 3
independent analyses. B) A representative immunoblot is shown. β-actin has been used as loading control. D.U., densitometric units; AD,
Alzheimer’s disease; CTRL, control.
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Figure 7 Plasma levels of Thioredoxin (Trx) in AD and control individuals. Samples from control and AD subjects were assayed for Trx
expression by Western blot. A) Densitometric evaluation: the bar graph shows the values are expressed as mean standard error of mean of 3
independent analyses. P ≤ 0.05 vs control. B) A representative immunoblot is shown. β-actin has been used as loading control. D.U., densitometric
units; AD, Alzheimer’s disease; CTRL, control.

Figure 8 Uncoupling proteins 1 (UCP1) levels in the plasma of AD and control individuals. Samples from control and AD were assayed for
UCP1 expression by Western blot. A) Densitometric evaluation: the bar graph shows the values are expressed as mean standard error of mean of
3 independent analyses. B) A representative immunoblot is shown. β-actin has been used as loading control. D.U., densitometric units; AD,
Alzheimer’s disease; CTRL, control.
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[40-42,48]. As a result, amyloid-β peptide [1,2,4-8,10,11,
14-27,30,33,34,36-51] has been proposed to play a central
role in the pathogenesis of AD [43]. We have previously
shown that increased protein oxidation and lipid peroxida-
tion are present in the brain from patients with mild cog-
nitive impairment (MCI), as compared to aged-matched
control brain [44,51]. Because many researchers consider
MCI to be the transition zone between normal cognition
and the dementia of early AD [45,46].
Cells have evolved different adaptive responses to

manage oxidative stress which includes the recognition
of cellular redox potential, reactive oxygen species and
protein oxidation and responding with changes in gene
expression [52,53]. Sirt-1 and Sirt-2 are stress induced
proteins that have been implicated in defense mecha-
nisms against agents that may induce oxidative injury,
and its induction represents a common feature in a
number of neurodegenerative diseases [54]. In addition,
another protein, thioredoxin reductase (TrxR), is emer-
ging as critical vitagene involved in brain stress toler-
ance. As such, it has been demonstrated that Trx plays
an important role in protecting against oxidative stress
and in regulating cell growth and cell death [38,55]. In
the present study, the role of the vitagenes Sirt-1, Sirt-2
and Trx, was investigated in the peripheral blood of AD
patients to gain further insight into the role of oxidant/
antioxidant balance as critical factors operating in the
pathogenesis of AD. We found that the levels of Sirt-1
and Sirt-2 in AD lymphocytes were significantly higher
than in control patients a finding associated with in-
creased expression of Trx, and a reduced expression of
UCP1, as compared to control group. The increased ex-
pression of these proteins, however, appear to be conse-
quence of a strong oxidant environment, which can be
relevant to the pathogenesis of AD. Sirt-1, has received
considerable attention, as it has been recently demon-
strated that Sirt-1 induction could represent a protective
system potentially active against brain oxidative injury
[20,39,56]. Several studies suggest that the Sirt-1 gene is
redox-regulated and its expression appears closely re-
lated to conditions of oxidative stress [49,57]. Another
protein, in addition, thioredoxin reductase (Trx), is
emerging as critical vitagene involved in brain stress tol-
erance. As such, it has been demonstrated that Trx plays
an important role in protecting against oxidative stress
and in regulating cell growth and cell death [50,55,58].
Furthermore, we found decreased levels of UCP expres-
sion in AD patients. Uncoupling proteins (UCPs) are
members of the family of mitochondrial anion carrier pro-
teins. The UCP1 is an integral membrane protein unique
to brown adipose tissue mitochondria. UCP1 separates
oxidative phosphorylation from ATP synthesis with energy
dissipated as heat. UCP1 facilitates the transfer of anions
from the inner to the outer mitochondrial membrane and
the return transfer of protons from the outer to the inner
mitochondrial membrane. UCP1 is activated in the brown
fat cell by fatty acids and inhibited by nucleotides [47].
Mitochondrial uncoupling mediated by uncoupling pro-
tein 1 (UCP1) is classically associated with non-shivering
thermogenesis by brown fat. UCP family proteins are also
present in selected neurons. They can be activated by free
radicals and free fatty acids, and their activity has a pro-
found influence on neuronal function. By regulating mito-
chondrial biogenesis, calcium flux and local temperature,
neuronal UCPs can directly influence neurotransmission,
synaptic plasticity and neurodegenerative processes. In
addition, by reducing free radical generation, UCP protein
may serve a cytoprotective system. Our results demon-
strate that AD is associated with increased oxidative stress,
which could have an impact on mitochondrial bioenerget-
ics affecting the function of neuronal mitochondrial com-
plex IV and complex V [47]. In this context, simultaneous
reductions in cytoprotective mechanisms, such as the
UCP system, could allow oxidative injury to go unchecked
or increase over time, thus representing an important fac-
tor sustaining the oxidative stress hypothesis of AD patho-
genesis. Consistently, modulation of endogenous cellular
defense mechanisms such as the vitagene network, includ-
ing sirtuin, thioredoxin and UCP proteins may have the
potential to broaden up new approaches to therapeutic
interventions in diseases associated with tissue damage
and cell death, such as in neurodegeneration. Our data,
supporting a role for oxidative stress in the pathogenesis
of AD, indicate that the stress responsive genes may repre-
sent an important target for novel cytoprotective strat-
egies, as molecules inducing this defense mechanism, via
nutritional and/or pharmacological approaches, can ex-
ploit the potential for antidegenerative therapeutic effects.
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