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Abstract
We describe the inflammation pathway from Cholesterol to Aging. Interleukin 6 mediated
inflammation is implicated in age-related disorders including Atherosclerosis, Peripheral Vascular
Disease, Coronary Artery Disease, Osteoporosis, Type 2 Diabetes, Dementia and Alzheimer's
disease and some forms of Arthritis and Cancer. Statins and Bisphosphonates inhibit Interleukin 6
mediated inflammation indirectly through regulation of endogenous cholesterol synthesis and
isoprenoid depletion. Polyphenolic compounds found in plants, fruits and vegetables inhibit
Interleukin 6 mediated inflammation by direct inhibition of the signal transduction pathway.
Therapeutic targets for the control of all the above diseases should include inhibition of Interleukin-
6 mediated inflammation.

Background
In 400 B.C., Hippocrates recognized the relationship
between health and food. He said: "Let food be your med-
icine and medicine be your food". In 1513, Spanish
explorer Juan Ponce de Leon discovered Florida while
searching for the Fountain of Youth, a mythical spring
said to restore youth. Ponce de Leon died trying to find
those waters. He should have been looking instead for the
Flora of Youth and inhibitors of Interleukin 6 mediated
inflammation.

Aging is associated with increased frequency of several dis-
orders including Atherosclerosis, Peripheral Vascular Dis-
ease, Coronary Artery Disease, Osteoporosis, Type 2
Diabetes, Dementia and Alzheimer's disease and some
forms of Arthritis and Cancer. Aging is also characterized
by a proinflammatory state that contributes to the onset
of disability and age-related diseases. Proinflammatory

cytokines play a central role in mediating cellular and
physiological responses. Studies of the effects of aging on
inflammatory response show interleukin-6 (IL-6), tumor
necrosis factor-alpha (TNF-alpha) and interleukin-1beta
(IL-1beta) to be important [1]. This review will focus on
inhibition of Interleukin 6 mediated inflammation as key
to the prevention and treatment of aging and age-related
disorders.

Atherosclerosis
Cardiovascular disease (CVD) is the leading cause of
death and disability in developed nations and is increas-
ing rapidly in the developing world. By the year 2020, it is
estimated that CVD will surpass infectious diseases as the
world's leading cause of death and disability. Atheroscle-
rotic vascular disease (ASVD), which encompasses coro-
nary heart disease, cerebrovascular disease, and peripheral
arterial disease, is responsible for the majority of cases of
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CVD in both developing and developed countries [2].
Atherosclerosis, a progressive disease characterized by the
accumulation of lipids and fibrous elements in the arter-
ies, constitutes the single most important contributor to
this growing burden of cardiovascular disease. The link
between lipid metabolism and atherosclerosis dominated
the thinking until the 1980s [3]. Over the last fifteen years,
however, a prominent role for inflammation in the patho-
genesis of atherosclerosis has been established [4]. Now
atherosclerosis is considered as an inflammation-medi-
ated disease driven by complex interactions between leu-
kocytes, platelets and cells of the vessel wall.

Endothelial injury is the first and crucial step in the patho-
genesis of atherosclerosis. A plethora of genetically deter-
mined and epigenetic factors, such as oxidized low-
density lipoprotein (LDL), free radicals (e.g., due to ciga-
rette smoking), hypertension, diabetes mellitus, elevated
plasma homocysteine, infectious microorganisms,
autoimmune reactions, and combinations thereof, have
been identified as etiological principles. Endothelial
injury triggers inflammation with increased adhesiveness
and activation of leukocytes (mainly monocytes) and
platelets, which is accompanied by the production of
cytokines, chemokines, vasoactive molecules and growth
factors.

The hallmark of the early atherosclerotic lesion is the Cho-
lesterol ester-laden (CE-laden) macrophage foam cell [5].
Progressive "free" cholesterol (FC) loading of lesional
macrophages leads to a series of phospholipid-related
adaptive responses. These adaptive responses eventually
fail, leading to macrophage death. Macrophage death by
necrosis leads to lesional necrosis, release of cellular pro-
teases, inflammatory cytokines, and prothrombotic mole-
cules, which could contribute to plaque instability, plaque
rupture, and acute thrombotic vascular occlusion [6].
Indeed, necrotic areas of advanced atherosclerotic lesions
are known to be associated with death of macrophages,
and ruptured plaques from human lesions have been
shown to be enriched in apoptotic macrophages. The
presence of apoptotic and necrotic macrophages in
atherosclerotic lesions has been well documented in
many human and animal studies [7,8].

Currently, the inflammatory mediators implicated in the
pathogenesis of atherosclerosis include cytokines, chem-
okines, vasoactive molecules and growth factors. The anti-
inflammatory effects of statins are attributed to multifac-
eted mechanisms including inhibition of cell cycle pro-
gression, induction of apoptosis, reduction of
cyclooxygenase-2 activity and a biphasic, dose-dependent
effect on angiogenesis [9]. At the center of these mecha-
nisms stands the ability to inhibit G protein prenylation

through a reduction of farnesylation and geranylgeranyla-
tion [10].

In order to advance the current theories and thinking [11],
and clarify the relationship between these common ill-
nesses, we submit our theory of the precise biochemical
pathway, between cholesterol and inflammation, and
between inflammation and aging and age-related disor-
ders including Atherosclerosis, Peripheral Vascular Dis-
ease, Coronary Artery Disease, Osteoporosis, Type 2
Diabetes, Dementia and Alzheimer's disease and some
forms of Arthritis and Cancer. By elaborating this bio-
chemical pathway, we will delineate a mechanism of the
pleiotropic effects of statins, bisphosphonate drugs and
polyphenolic compounds. The common mechanism of
action and common pleiotropic effects of the statins,
bisphosphonate drugs and plant derived and synthetic
polyphenolic compounds in addition to our identifica-
tion of the unique activity of the Interleukin 6 cytokine
among all the vast mediators of inflammation and the
inflammatory response enabled us to reverse engineer this
biochemical pathway. Each component of our theory is
supported and validated by numerous research studies.

Acute Phase Response
The acute phase response occurs prior to antibody-medi-
ated immunological defense. It occurs in response to an
inflammatory response brought on by injury and trauma,
neoplasm, or disordered immunological activity. A local
reaction at the site of injury or infection leads to an activa-
tion of cytokines (specifically, IL-6, IL-1, TNF-Alpha, and
interferons) that triggers a systemic response consisting of
leukocytosis; increases in glucocorticoid production;
increases in erythrocyte sedimentation rates, fever, activa-
tion of complement and clotting cascades; decreases in
serum zinc and iron; and an increase in plasma levels of
acute phase proteins, C-reactive protein (CRP), serum
amyloid A, fibrinogen, and other proteins [12].

Levels of cytokines involved in the acute phase response –
TNF-Alpha, IL-1, IL-6, and fibrinogen – have been shown
to be elevated in cases of unstable angina related to aneu-
rysm [13-15] and have been positively correlated with the
risk of primary and recurrent myocardial infarction and
death [16-18]. The risk associated with these elevated lev-
els remains constant even when the data is adjusted for
other major risk factors: blood pressure, total and HDL
cholesterol, body mass index, diabetes, alcohol use, fam-
ily history, and exercise frequency [15]. Elevated levels of
highly sensitive C-reactive protein (hs-CRP) have been
related to increased risk of cardiovascular disease, myocar-
dial infarction, and coronary artery disease (CAD) deaths
among individuals with angina pectoris [19-21]. Assayed
levels of hs-CRP can increase 100 times over normal levels
within 24–48 hours after an acute inflammatory stimulus.
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However, in long term prospective studies inter-individ-
ual variations in hs-CRP levels may occur over long peri-
ods of time, in the absence of trauma or acute infection
[22] Elevated levels of hs-CRP have shown a doubling of
risk both for ischemic stroke in hypertensive men and
women [14,23] and for peripheral artery disease [24].

Recent studies are now demonstrating that IL-6 and TNF-
alpha are stronger predictors of cardiovascular disease
than C-reactive protein. In the Health, Aging and Body
Composition study [25], done at the Wake Forest Univer-
sity School of Medicine, the researchers tracked the medi-
cal history of the 2,225 participants for an average of 42
months after measuring their blood levels of C-reactive
protein, IL-6 and TNF-alpha. People with the highest IL-6
levels were two to five times more likely to have a heart
attack, stroke or other cardiovascular episode than those
with the lowest levels. High blood levels of TNF-alpha
increased the risk of heart disease by 79 percent and of
heart failure by 121 percent. High levels of C-reactive pro-
tein increased the risk of heart failure by 160 percent com-
pared to those with low levels, but they did not
significantly raise the risk of a first stroke or heart attack.

As expected, the incidence of cardiovascular disease was
high for people with the conventional risk factors – smok-
ing, high blood pressure, high cholesterol and the like.
But for participants free of those risk factors, the inflam-
mation-related molecules were better predictors of heart
disease.

Cholesterol Metabolism
Normal healthy adults synthesize cholesterol at a rate of
approximately 1 g/day and consume approximately 0.3 g/
day. A relatively constant level of cholesterol in the body
(150 – 200 mg/dL) is maintained primarily by controlling
the level of de novo synthesis. The level of cholesterol syn-
thesis is regulated in part by the dietary intake of choles-
terol. Cholesterol from both diet and synthesis is utilized
in the formation of membranes and in the synthesis of the
steroid hormones and bile acids. The greatest proportion
of cholesterol is used in bile acid synthesis [26]. Choles-
terol synthesis occurs in the cytoplasm and microsomes
with initial synthesis of mevalonate from the two-carbon
acetate group of acetyl-CoA. See Figure 1 (Mevalonate
Synthesis).

1. Synthesis begins when acetyl-CoA is derived from an
oxidation reaction in the mitochondria and is transported
to the cytoplasm

2. Two moles of acetyl-CoA are condensed, forming ace-
toacetyl-CoA. Acetoacetyl-CoA and a third mole of acetyl-
CoA are converted to 3-hydroxy-3-methylglutaryl-CoA
(HMG-CoA) by the action of HMG-CoA synthase.

3. HMG-CoA is converted to mevalonate, in a rate limiting
step catalyzed by the enzyme HMG-CoA reductase,
(HMGR)

In human beings, cholesterol and isoprenoids are then
synthesized via the mevalonate pathway. See Figure 2
(Cholesterol and Isoprenoid Synthesis).

1. Mevalonate is activated by three successive phosphor-
ylations, yielding 5-pyrophosphomevalonate

2. After phosphorylation, an ATP-dependent decarboxyla-
tion yields isopentenyl pyrophosphate, (IPP), an activated
isoprenoid molecule. Isopentenyl pyrophosphate is in
equilibrium with its isomer, dimethylallyl pyrophos-
phate, DMAPP.

3. One molecule of IPP condenses with one molecule of
DMAPP to generate geranyl pyrophosphate, (GPP). This
step is catalyzed by GPP synthase.

4. GPP further condenses with another IPP molecule to
yield farnesyl pyrophosphate, (FPP). This step is catalyzed
by FPP synthase.

5. FPP condenses with another IPP molecule to yield ger-
anylgeranyl pyrophosphate (GGPP). This step is catalyzed
by GGPP synthase

6. The head-to-tail condensation of two molecules of FPP
yielding Squalene, is catalyzed by squalene synthase.

7. Squalene undergoes a two-step cyclization to yield
lanosterol.

8. Lanosterol is converted to cholesterol, through a series
of 19 additional reactions

There is a complex regulatory system to co-ordinate the
biosynthesis of cholesterol with the availability of dietary
cholesterol. The cellular supply of cholesterol is main-
tained at a steady level by the following mechanisms:

1. Regulation of HMGR activity and levels

2. Regulation of excess intracellular free cholesterol
through the activity of acyl-CoA:cholesterol acyltrans-
ferase, (ACAT)

3. Regulation of plasma cholesterol levels via LDL recep-
tor-mediated uptake and HDL-mediated reverse trans-
port.
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Interleukin 6
The Interleukin-6 family of cytokines, signaling through
the common receptor subunit (glycoprotein) subse-
quently activates signal transducers and activators of tran-
scription (STAT3), mitogen-activated proteinkinase
(MAPK), and phosphatidylinositol 3-kinase (PI3K) [27].
The interleukin-6 (IL6) family comprises interleukin (IL)-
6, IL-11, leukemia inhibitory factor, oncostatin M, ciliary
neurotrophic factor and cardiotrophin-1. Among its many
functions, IL-6 plays an active role in inflammation,
immunology, bone metabolism, reproduction, arthritis,
neoplasia, and aging. IL-6 expression is regulated by a
variety of factors, including steroidal hormones, at both
the transcriptional and post-transcriptional levels. Ele-
vated levels of IL-6 are associated with the highest risks for
subclinical cardiovascular disease as well as for clinical
cardiovascular disease in older men and women [28]. Ele-
vated levels of IL-6 are associated with a 34 percent
increased likelihood of cognitive decline in older men and
women [29]. Interleukin-6 mediated inflammation con-
tributes to bone resorption and osteoporosis by stimulat-
ing osteoclastogenesis and osteoclast activity [30-32].
Interleukin (IL)-6 production is considerably enhanced
and associated with bone destruction in Staphylococcus
aureus and mycobacterial arthritis, osteitis or osteomyeli-
tis [33-35]. During times of stress or depression, IL-6 lev-
els are increased. In a study of older adults undergoing a
chronic stressor (men and women who were caregiving
for a spouse with dementia), Caregivers' average rate of
increase in IL-6 was about four times as large as that of
non-caregivers [36,37].

IL-6 transmits its biological signal through two proteins
on the cell. One of them is IL-6 receptor (IL-6R), an IL-6-
specific binding molecule with a molecular weight of
about 80 kD. The other is a membrane-bound protein
gp130 having a molecular weight of about 130 kD that is
involved in non-ligand-binding signal transduction. IL-6
receptor exists not only in the membrane-bound form
with transmembrane domain expressed on the cell surface
but also as a soluble IL-6 receptor consisting mainly of the
extracellular region. IL-6 and IL-6 receptor form the IL-6/
IL-6 receptor complex, which after binding to gp130
transmits its biological signal to the cell. The important
participants in the Interleukin-6 signaling pathway
include the Janus kinases (JAKs) Jak1, Jak2 and Tyk2, the
signal transducers and activators of transcription STAT1
and STAT3, the tyrosine phosphatase SHP2 [SH2 (Src
homology 2) domain-containing tyrosine phosphatase]
and transcription factor NF-κB.

Protein Kinases
Engagementof cell surface Interleukin-6 receptors acti-
vates the Janus kinase(JAK) family of tyrosine kinases,
which in turn phosphorylate the cytoplasmic part of

gp130, thereby creating docking sites for STAT factors
STAT1 and STAT3 [38,39]. Activated STATs dimerize upon
activation by JAKs and translocate to the nucleus where
theybind specific DNA response elements and regulate the
expressionof certain genes. Following gp130 dimeriza-
tion, IL-6 activates multiple signaling pathways (Ras
dependent MAP Kinase cascade, STAT1-STAT3 het-
erodimer pathway, and STAT3 homodimer pathway) [40-
42].

Dimeric transcription factors
Activator protein-1 (AP-1) is a collective term referring to
dimeric transcription factors composed of Jun, Fos, or ATF
(activating transcription factor) subunits that bind to the
AP-1 binding site on the several proinflammatory genes
including the IL-6 promoter [43]. AP-1 activity plays an
important role in the inflammatory response by modulat-
ing gene expression of several inflammatory mediators
including IL-6 transcription. Phosphorylation of c-Jun is a
prerequisite of AP-1 dimerization and activation. AP-1
activity is controlled by signaling through the JNK family
of MAP kinases. It has been demonstrated that during
reperfusion, oxidative stress leads to activation and trans-
location of JNK to the nucleus, where phosphorylation of
transcription factors, such as c-Jun occurs.

Nuclear factor kappa b
Nuclear factor κB (NF-κB) is a widely expressed, inducible
transcription factor of particular importance to cells of the
immune system. It was originally identified as an
enhancer binding protein for the Ig κ-light chain gene in
B cells [44]. NF-κB regulates the expression of many genes
involved in mammalian immune and inflammatory
responses, including cytokines, cell adhesion molecules,
complement factors, and a variety of immunoreceptors.
The NF-κB transcription factor is a heterodimeric protein
that comprises the p50 and p65 (Rel A) subunits. These
subunits are proteins of the Rel family of transcriptional
activators. Members of the Rel family share a conserved
300-amino acid Rel homology domain responsible for
DNA binding, dimerization, and nuclear localization.
While transcriptionally active homodimers of both p50
and p65 can form, the p50/65 heterodimer is preferen-
tially formed in most cell types [45].

In the absence of stimulatory signals, the NF-κB het-
erodimer is retained in the cytoplasm by its physical asso-
ciation with an inhibitory phosphoprotein, IκB. Multiple
forms of IκB have been identified [46]. Two of these
forms, IκBα and IκBβ, have been shown to modulate the
function of the NF-κB heterodimer, and these two IκBs are
phosphorylated in response to different extracellular stim-
uli [47]. Recent studies indicate that the catalytic subunit
of protein kinase A (PKAC) is associated with the NF-κB/
IκBα complex [48]. In this p50/p65/IκBα/PKAC tetrameric
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configuration, IκBα renders PKAC inactive and masks the
nuclear localization signal on NF-κB. Proinflammatory
stimuli can activate a number of protein kinases, which
have the capacity to modulate nuclear factor-κB (NF-κB)
or activator protein-1 (AP-1) activity. A variety of extracel-
lular stimulatory signals, such as cytokines, viruses, and
oxidative stressors [49] activate kinases that phosphor-
ylate IκB. The cytokine-activated IκB kinase termed IKK is
the key regulatory kinase for IκBα [50]. IkappaB kinase
(IKK) complex is composed of subunits, IKK-alpha, IKK-
beta and IKK-gamma, which are serine/threonine protein
kinases whose function is needed for NF-kappaB activa-
tion by pro-inflammatory stimuli [51]. Phosphorylation
at serines 32 and 36 targets IκBα for ubiquitination and
subsequent rapid proteolysis via a proteasome-mediated
pathway [52-55], resulting in the release of NF-κB/PKAC.
The now active PKAC subunit dissociates and phosphor-
ylates the p65 subunit of NF-κB. Phosphorylated NF-κB
then translocates to the cell nucleus, where it binds to tar-
get sequences in the chromatin and activates specific gene
subsets, particularly those important to immune and
inflammatory function [56-58]. PPAR alpha (Peroxisome
proliferator-activated receptor alpha) negatively interferes
with inflammatory gene expression by up-regulation of
the cytoplasmic inhibitor molecule IkappaB alpha, thus
establishing an autoregulatory loop. This induction takes
place in the absence of peroxisome proliferator-response
elements (PPRE), but requires the presence of NF-kappaB
and Sp1 elements in the IkappaB alpha promoter
sequence as well as DRIP250 cofactors [59].

Nuclear factor-kappaB (NF-kappaB) is a required tran-
scription factor for Ang II-inducible IL-6 expression. Inter-
leukin-6 (IL-6) is expressed by angiotensin II (Ang II)-
stimulated vascular smooth muscle cells (VSMCs). In one
study Ang II treatment induced IL-6 transcription by
inducing cytoplasmic-to-nuclear translocation of the NF-
kappaB subunits Rel A and NF-kappaB1 with parallel
changes in DNA-binding activity in a biphasic manner,
which produced an early peak at 15 minutes followed by
a nadir 1 to 6 hours later and a later peak at 24 hours [60].

Peroxisome Proliferator-Activated Receptors 
(PPARs)
Peroxisome proliferator-activated receptors (PPARs) are
ligand-activated transcription factors which form a sub-
family of the nuclear receptor gene family. The PPAR sub-
family consists of three isotypes, alpha (NR1C1), gamma
(NR1C3), and beta/delta (NRC1C2) with a differential
tissue distribution. PPARs are activated by ligands, such as
naturally occurring fatty acids, which are activators of all
three PPAR isotypes. In addition to fatty acids, several syn-
thetic compounds, such as fibrates and thiazolidinedi-
ones, bind and activate PPARalpha and PPARgamma,
respectively. PPARalpha is expressed primarily in tissues

with a high level of fatty acid catabolism such as liver,
brown fat, kidney, heart and skeletal muscle. PPARbeta is
ubiquitously expressed, and PPARgamma has a restricted
pattern of expression, mainly in white and brown adipose
tissues, whereas other tissues such as skeletal muscle and
heart contain limited amounts. Furthermore, PPARalpha
and gamma isotypes are expressed in vascular cells includ-
ing endothelial and smooth muscle cells and macro-
phages/foam cells. In order to be transcriptionally active,
PPARs need to heterodimerize with the retinoid-X-recep-
tor (RXR). Upon activation, PPAR-RXR heterodimers bind
to DNA specific sequences called peroxisome proliferator-
response elements (PPRE) and stimulate transcription of
target genes. PPARs play a critical role in lipid and glucose
homeostasis, but lately they have been implicated as reg-
ulators of inflammatory responses. The first evidence of
the involvement of PPARs in the control of inflammation
came from the PPARalpha null mice, which showed a pro-
longed inflammatory response. PPARalpha activation
results in the repression of NF-kappaB signaling and
inflammatory cytokine production in different cell-types.
A role for PPARgamma in inflammation has also been
reported in monocyte/macrophages, where ligands of this
receptor inhibited the activation of macrophages and the
production of inflammatory cytokines (TNFalpha, inter-
leukin 6 and 1beta) [61]. PPAR activators have effects on
both metabolic risk factors and on vascular inflammation
related to atherosclerosis. PPAR have profound effects on
the metabolism of lipoproteins and fatty acids. PPAR
alpha binds hypolipidemic fibrates, whereas PPAR
gamma has a high affinity for antidiabetic glitazones.
Both PPAR alpha and gamma are activated by fatty acids
and their derivatives. Activation of PPAR alpha increases
the catabolism of fatty acids at several levels. In the liver,
it increases uptake of fatty acids and activates their beta-
oxidation. The effects that PPAR alpha exerts on triglycer-
ide-rich lipoproteins is due to their stimulation of lipo-
protein lipase and repression of apolipoprotein CIII
expression, while the effects on high-density lipoproteins
depend upon the regulation of apolipoproteins AI and
AII. PPAR gamma has profound effects on the differentia-
tion and function of adipose tissue, where it is highly
expressed. PPAR are also expressed in atherosclerotic
lesions and are present in vascular endothelial cells,
smooth muscle cells, monocytes, and monocyte-derived
macrophages. Via negative regulation of nuclear factor-
kappa B and activator protein-1 signaling pathways, PPAR
alpha inhibits expression of inflammatory genes, such as
interleukin-6, cyclooxygenase-2, and endothelin-1. Fur-
thermore, PPAR alpha inhibits expression of monocyte-
recruiting proteins such as vascular cell adhesion mole-
cule (VCAM)-1 and induces apoptosis in monocyte-
derived macrophages. PPAR gamma activation in macro-
phages and foam cells inhibits the expression of activated
genes such as inducible nitric oxide synthase, matrix met-
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alloproteinase-9 and scavenger receptor A. PPAR gamma
may also affect the recruitment of monocytes in athero-
sclerotic lesions as it is involved in the expression of
VCAM-1 and intracellular adhesion molecule-1 in vascu-
lar endothelial cells[62].

Activation of Interleukin-6 inflammation by 
isoprenoids
Cytokine receptors act through a complex signaling net-
work involving GTPase proteins such as Ras, Rho, Rac,
and Rab (particularly Rho), Janus kinases (JAKs) and the
signal transducers and activators of transcription (STATs)
to regulate diverse biological processes controlling
immune function, growth, development and homeostasis
[63].

Isoprenoids are necessary for posttranslational lipid mod-
ification (prenylation) and, hence, the function of Ras
and other small guanosine triphosphatases (GTPases)
[64].

GTPase proteins such as Ras, Rho, Rac, and Rab (particu-
larly Rho) are intracellular signaling proteins that, when
activated, are involved in receptor-coupled transduction
of signals from extracellular stimuli to cytoplasm and the
nucleus. Small GTPase proteins constitute a Ras super-
family, which is comprised of at least five major branches.
Members of the Ras branch include the Ras, Rap, Ral and
R-Ras family proteins [65,66]. The Ras family regulates
gene expression. The Rho branch constitutes a second
major branch, with RhoA, Rac1 and Cdc42 the most stud-
ied members. The Rho family regulates cytoskeletal reor-
ganization and gene expression. The Rab branch is the
largest, and, together with members of the Arf/Sar branch,
serve as regulators of intracellular vesicular transport. Ran
is the sole member of its branch and is a crucial regulator
of nucleo-cytoplasmic transport of proteins and RNA. The
Ras superfamily proteins alternate between an inactivated
GDP-bound form and activated GTP-boundform, allow-
ing them to act as molecular switches for growth and dif-
ferentiation signals. Prenylation is a process involving the
binding of hydrophobic isoprenoid groups consisting of
farnesyl or geranylgeranyl residues to the C-terminal
region of Ras protein superfamily. Farnesyl pyrophos-
phate (FPP) and Geranylgeranyl pyrophosphate (GPP)
are metabolic products of mevalonate that are able to sup-
ply prenyl groups. The prenylation is conducted by prenyl
transferases. The hydrophobic prenyl groups are necessary
to anchor the Ras superfamily proteins to intracellular
membranes so that they can be translocated to the plasma
membrane [67]. The final cell-membrane fixation is nec-
essary for Ras proteins to participate in their specific inter-
actions [68,69]. The activity of the small GTPase, Rac1,
plays a role in various cellular processes including
cytoskeletal rearrangement, gene transcription, and malig-

nant transformation. Small GTPases of the Ras protein
superfamily stimulate the tyrosine phosphorylation and
activation of the JAK family of intracellular kinases. This
in turn activates the STAT family of transcription factors
and results in the induction of Interleukin-6 and IL-6
receptor gene. Persistent Rac1 activity leads to the auto-
crine production and signal transduction of Interleukin-6
[36]. IL-6 itself may produce a delayed phosphorylation
and activation of STAT3, and the JAK/STAT3 pathway is an
indirect target of Ras and Rho GTPases [70]. Blocking the
IL-6 signaling pathway inhibits Rac1-mediated STAT3-
dependent gene expression. In one study [71], constitu-
tively active Rac1 (Rac V12) is shown to stimulate the acti-
vation of STAT3. The activity of Rac1 leads to STAT3
translocation to the nucleus coincident with STAT3-
dependent gene expression [72]. Rac1 expression results
in the induction of the IL-6 and IL-6 receptor genes and
neutralizing antibodies directed against the IL-6 receptor
block Rac1-induced STAT3 activation. Inhibition of
nuclear factor-kappaB activation or disruption of IL-6-
mediated signaling through the expression of IkappaBal-
pha S32AS36A and suppressor of cytokine signaling 3,
respectively, blocks Rac1-induced STAT3 activation. The
study also investigated whether the other Rho family
members mediate STAT3 activation in an IL-6-dependent
pathway. The expression of constitutively active RhoG,
Cdc42, and RhoA caused the translocation from the cyto-
plasm to the nucleus of cotransfected STAT3-GFP. This
GTPase-induced STAT3 translocation was blocked to var-
ying degrees by neutralizing IL-6 receptor antibodies, sup-
porting a role for autocrine IL-6 in Rho family-induced
STAT3 activation. These findings elucidate a mechanism
dependent on the induction of an autocrine IL-6 activa-
tion loop through which Rac1 and the Rho family medi-
ate STAT3 activation establishing a link between GTPase
activity and Janus kinase/STAT signaling. Interestingly,
STAT3 is persistently activated in many human cancers
and transformed cell lines. In cell culture, active STAT3 is
either required for transformation, enhances transforma-
tion, or blocks apoptosis.

In one study [73], leukemic cells from 50 patients with
acute myeloid leukemia (AML) were analyzed for the
presence of activating point mutations of the N-RAS gene
using polymerase chain reaction (PCR) and differential
oligonucleotide hybridization. Clonal activation of N-
RAS, noted in the large majority of leukemic cells of the six
of these patients, was correlated significantly (p = 0.0003)
with the ability of these cells to express interleukin 6 (IL-
6), previously shown to be expressed at high levels in
approximately 30% of primary AML cells.

In summary, isoprenoids farnesyl pyrophosphate (FPP)
and geranylgeranyl pyrophosphate (GPP) are necessary
for posttranslational lipid modification (prenylation)
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and, hence, the function of Ras and other small GTPase
proteins such as Ras, Rho, Rac, and Rab [52]. Persistently
active Rho family and Rac1 results in the activation of
JAKs and subsequent tyrosine phosphorylation and acti-
vation of STAT3 [74]. Tyrosine phosphorylated STAT3
forms dimers that translocate to the nucleus to bind DNA
target sites in responsive genes [59]. IL-6 and IL-6 receptor
gene induction occurs as a result of activated STAT pro-
teins and IL-6 mediates the long-term activation of STAT3
through an autocrine loop.

Inhibition of cholesterol pathway by statins
The main effect of statins is the decrease of serum level of
low-density lipoprotein (LDL) cholesterol, due to the
inhibition of intracellular cholesterol biosynthesis. A
minor effect is the decrease of serum triglycerides. Statins
inhibit HMG-CoA reductase and decrease the production
of mevalonate, geranyl pyrophosphate, and farnesyl pyro-
phosphate, and subsequent products on the way to con-
struction of the cholesterol molecule. Thus, statins could
inhibit inflammation, by inhibition of the cholesterol
pathway and intracellularly interfering with Ras super-
family protein function [75]. Ikeda et al. [76] recently
showed that statins decrease matrix metalloproteinase-1
expression through inhibition of Rho. Statin therapy has
been demonstrated to provide significant reductions in
non-high-density lipoprotein cholesterol, and to decrease
cardiovascular morbidity and mortality.

Inhibition of cholesterol pathway by 
bisphosphonates
Recent findings suggest that alendronate and other N-con-
taining bisphosphonates inhibit the isoprenoid biosyn-
thesis pathway and interfere with protein prenylation, as
a result of reduced geranylgeranyl diphosphate levels.
One study [77] utilizing High-performance liquid chro-
matography (HPLC) analysis of products from a liver
cytosolic extract, identified farnesyl disphosphate (FPP)
synthase as the mevalonate pathway enzyme inhibited by
bisphosphonates. Recombinant human farnesyl diphos-
phate synthase was inhibited by alendronate with an
IC(50) of 460 nM (following 15 min preincubation).
Alendronate did not inhibit isopentenyl diphosphate iso-
merase or GGPP synthase. Recombinant farnesyl diphos-
phate synthase was also inhibited by pamidronate
(IC(50) = 500 nM) and risedronate (IC(50) = 3.9 nM),
negligibly by etidronate (IC50 = 80 microM), and not at
all by the non-nitrogen-containing bisphosphonate clodr-
onate. In another study, a wide range of bisphosphonates,
were found to have a significant correlation between
potency for inhibition of recombinant human FPP syn-
thase in vitro and anti-resorptive potency in vivo, suggest-
ing that this enzyme is the major pharmacologic target of
these drugs. The most potent anti-resorptive bisphospho-
nates such as zoledronic acid and risedronate are very

potent inhibitors of FPP synthase, with IC50 values as low
as 3 nM and 10 nM respectively. Inhibition of FPP syn-
thase prevents the formation of FPP and its derivative
GGPP. These isoprenoid lipids are necessary for the post-
translational lipid modification (prenylation) of small
GTPase proteins such as Ras, Rho, Rac, and Rab. The
effects of nitrogen-containing bisphosphonates on osteo-
clasts can be overcome by addition of components of the
mevalonate pathway, which bypass the inhibition of FPP
synthase and restore protein prenylation. In particular,
geranylgeraniol (a cell-permeable form of GGPP) pre-
vents inhibition of resorption by nitrogen-containing
bisphosphonates in vitro [78].

Fungi, plant-derived polyphenolic compounds 
and fatty acids
Statins identical to the cholesterol lowering pharmaceuti-
cal lovastatin and its derivatives of simvastatin, pravasta-
tin and mevastatin can be produced by a variety of
filamentous fungi, including Monascus, Aspergillus, Pen-
icillium, Pleurotus, Pythium, Hypomyces, Paelicilomyces,
Eupenicillium, and Doratomyces [79]. As a food product,
rice fermented with a red Monascus fungus (red rice) has
been known to contain low amounts of statins and used
for hundreds of years in China. Red rice is used in wine
making, as a food-coloring agent and as a drug in tradi-
tional Chinese medicine.

Several hundred molecules having a polyphenol (polyhy-
droxyphenol) structure (i.e. several hydroxyl groups on
aromatic rings) have been identified in edible plants.
These molecules are secondary metabolites of plants and
are generally involved in defense against ultraviolet radia-
tion or aggression by pathogens. Polyphenols are wide-
spread constituents of fruits, vegetables, cereals, dry
legumes, chocolate, and beverages, such as tea, coffee, or
wine. These compounds may be classified into different
groups as a function of the number of phenol rings that
they contain and of the structural elements that bind these
rings to one another. Classes of polyphenols include the
phenolic acids, flavonoids, stilbenes, and lignans. There
are two classes of phenolic acids: derivativesof benzoic
acid and derivatives of cinnamic acid.

Hydroxybenzoic acids are components of complex struc-
tures such as hydrolyzable tannins (gallotanninsin man-
goes and ellagitannins in red fruit such as strawberries,
raspberries, and blackberries). Hydroxycinnamic acids are
more common than are the hydroxybenzoicacids and
consist chiefly of p-coumaric, caffeic, ferulic, and sinapic
acids. Caffeic and quinic acid combine to form chloro-
genic acid, whichis found in many types of fruit and in
high concentrations in coffee.
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Flavonoids, are the largest single class as far as total num-
bers of known compounds. About two-thirds of the
polyphenols we obtain in our diets are flavonoids. Flavo-
noids share a common structure consisting of 2 aromatic
rings that are bound together by 3 carbon atoms that form
an oxygenated heterocycle, and may be divided into 6
major subclasses: Anthocyanidins (e.g., cyanidin, pelargo-
nidin); Flavanols (e.g., epicatechin, gallocatechin); Fla-
vones (e.g., apigenin, luteolin); Flavonols (e.g.,
kaempferol, myricetin, quercetin); Flavanones (e.g., hes-
peridin, naringenin); Isoflavones (e.g., genistein, daid-
zein, biochanin) and Proanthocyanidins [80].

Proanthocyanidins (condensed tannins) are a class of
polyphenolic compounds found in several plant species.
They include procyanidins, which are chains of catechin,
epicatechin, and their gallic acid esters and the prodelphi-
nidins, which consist of gallocatechin, epigallocatechin,
and their gallic acid esters as the monomeric units.

Isoflavones are flavonoids with structural similarities to
estrogens. Although they are not steroids, they have
hydroxyl groups in positions 7 and 4 in a configuration
analogous to that of the hydroxyls in the estradiol mole-
cule. This confers pseudohormonal properties on them,
including the ability to bind to estrogen receptors, and
they are consequently classified as phytoestrogens. Phy-
toestrogenic isoflavones including genistein, daidzein,
glycitein, biochanin A, formononetin, and their respective
naturally occurring glycosides and glycoside conjugates
are found in plants such as legumes, clover, and the root
of the kudzu vine (pueraria root). Common legume
sources of these isoflavone compounds include soy beans,
chick peas, ground nuts, lentils and various other types of
beans and peas. Clover sources of these isoflavone com-
pounds include red clover and subterranean clover.

Fatty acids consist of chains of carbon atoms linked
together by chemical bonds. Fatty acids come in different
lengths: short chain fatty acids have fewer than 6 carbons,
while long chain fatty acids have 12 or more carbons. On
one terminal of the carbon chain is a methyl group and on
the other terminal is a carboxyl group. The chemical
bonds between the carbon atoms determine whether a
fatty acid is saturated or unsaturated. Saturated fatty acids
contain single bonds only. Examples of foods high in sat-
urated fats include lard, butter, whole milk, cream, eggs,
red meat, chocolate, and solid shortenings. An excess
intake of saturated fat can raise blood cholesterol and
increase the risk of developing coronary heart disease.
Monounsaturated fatty acids contain one double bond.
Examples of foods high in monounsaturated fat include
avocados, nuts, and olive, peanut, and canola oils. Poly-
unsaturated fatty acids contain more than one double
bond. Examples of foods high in polyunsaturated fats

include vegetable oils, corn, sunflower, and soy. Essential
fatty acids are polyunsaturated fatty acids that the human
body needs for metabolic functioning but cannot pro-
duce, and therefore has to be acquired from food. Omega-
3 fatty acids are a class of essential polyunsaturated fatty
acids with the double bond in the third carbon position
from the methyl terminal (hence the use of "3" in their
description). Foods high in omega-3 fatty acids include
cold-water fatty fish such as salmon, herring, mackerel,
anchovies and sardines, and vegetable sources such as the
oil from the seeds of chia, perilla, flax, purslane, hemp,
and canola. Other foods that contain omega-3 fatty acids
include whole grains, beans, green leafy vegetables such as
spinach and seafood such as shrimp, clams, light chunk
tuna, catfish and cod. Omega-6 fatty acids are a class of
essential polyunsaturated fatty acids with the initial dou-
ble bond in the sixth carbon position from the methyl
group. Examples of foods rich in omega-6 fatty acids
include corn, safflower, sunflower, soybean, and cotton-
seed oil. Omega-3 and omega-6 fatty acids are also
referred to as n-3 and n-6 fatty acids, respectively.

Atherosclerosis and Interleukin 6
Macrophage uptake of oxidized low-density lipoprotein
(Ox-LDL) is a hallmark of the early atherosclerotic lesion,
and may be mediated by Interleukin-6. Incubation of IL-6
with MPM or IL-6 administration in mice increased mac-
rophage Ox-LDL degradation and CD36 mRNA expres-
sion. Angiotensin II (Ang II) plays an important role in
atherogenesis. Ang II increases macrophage cholesterol
accumulation and foam cell formation, increases contrac-
tion of blood vessels and induces hypertrophyand hyper-
plasia of vascular smooth muscle cells (VSMC). Ang II
significantly increases the expression of IL-6 mRNA and
protein in vascular smooth muscle, in a dose-dependent
manner. The induction of IL-6 expression by Ang II is
dependent on intracellular Ca2+, tyrosine phosphoryla-
tion, and mitogen-activated proteinkinase (MAPK)[81].
Ang II administration to apolipoprotein E-deficient
atherosclerotic mice increases Ox-LDL degradation, CD36
mRNA expression, and CD36 protein expression by their
peritoneal macrophages (MPMs). Ang II treatment of IL-
6-deficient mice did not affect their MPM Ox-LDL uptake
and CD36 protein levels. Furthermore, injection of IL-6
receptor antibodies in mice during Ang II treatment
reduced macrophage Ox-LDL uptake and CD36 expres-
sion [82].

Enzymatic, nonoxidative modification transforms low
density lipoprotein (LDL) to an atherogenic molecule (E-
LDL) that activates complement and macrophages and is
present in early atherosclerotic lesions. E-LDL accumu-
lates in human vascular smooth muscle cells (VSMC),
where it stimulates the expression of gp130, the signal-
transducing chain of the IL-6 receptor (IL-6R) family, and
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the secretion of Interleukin-6 [83]. IL-6/sIL-6R provokes
marked up-regulation of gp130 mRNA and surface pro-
tein expression in VSMC. This is accompanied by secre-
tion of IL-6 by the cells, so that an autocrine stimulation
loop is created. In the wake of this self-sustaining system,
there is a selective induction and secretion of monocyte
chemotactic protein-1 (MCP-1), up-regulation of ICAM-1,
and marked vascular smooth muscle proliferation [84].
Interleukin-6 (IL-6) induces proliferation of vascular
smooth muscle cells and the release of monocyte chem-
oattractant protein-1 (MCP-1) [85]. One study investi-
gated IL-6 mRNA expression in atherosclerotic arteries
from patients undergoing surgical vascularization, utiliz-
ing reverse transcription polymerase chain reaction (RT-
PCR) and in situ hybridization analyses. In RT-PCR anal-
ysis, the atherosclerotic arteries showed 10- to 40-fold lev-
els of IL-6 mRNA expression over the non-atherosclerotic
artery. In in-situ hybridization analysis, IL-6 gene tran-
scripts were observed in the thickened intimal layer of
atherosclerotic lesions. These results strongly suggest the
involvement of IL-6 in the development of human athero-
sclerosis [86]. Thrombin is a potent mitogen for vascular
smooth muscle cells (VSMCs) and plays an important role
in the progression of atherosclerosis. Thrombin induces
IL-6 mRNA and protein expression in a dose-dependent
manner. Pharmacological inhibition of extracellular sig-
nal-regulated protein kinase (ERK), p38 mitogen-acti-
vated protein kinase (MAPK), or epidermal growth factor
receptor (EGF-R) suppresses thrombin-induced IL-6
expression [87]. IL-6 increases the number of plateletsin
the circulation [88] and activates platelets through arachi-
donic acid metabolism in vitro [89] IL-6 is reported to
increaseplasma fibrinogen and decrease free protein S
concentration. These IL-6-induced modifications of plate-
let and the coagulant phase of the clotting mechanism
may lead to pathological thrombosis and instability of
plaque [90]. IL-6 stimulation of vascular smooth muscle
cells occurs via the JAK/STAT signaling pathway. In one
study, Rat VSMC were stimulated with IL-6 in the presence
or absence of a JAK 2 inhibitor, and the activation of STAT
3 (by Western), MCP-1 (by ELISA) and DNA synthesis (by
(3)H-thymidine incorporation) was determined. IL-6 rap-
idly induced phosphorylation of STAT 3 in a dose- and
time-dependent manner with a peak expression at 30
min. IL-6 also stimulated MCP-1 protein production and
DNA synthesis dose dependently. 50 microM of AG490, a
specific JAK 2 inhibitor, partially inhibited STAT 3 activa-
tion and MCP-1 production, with near complete inhibi-
tion of DNA synthesis [91]. Levels of IL-6 are significantly
higher in patients with dyslipidemia IIa and IIb biochem-
ically confirmed, and IL-6 levels are significantly corre-
lated to intima-media complex thickness [92].

Statins and Interleukin 6
The ability of HMG-CoA reductase inhibitors to lower C-
reactive protein levels has recently brought into question
the mechanisms of action of the statin drugs. Because
these medications lower incidences of acute cardiovascu-
lar events as well as decreasing morbidity and mortality
well before the effects of lowered LDL cholesterol can be
expected to occur, questions have been asked about
whether they may work independently of LDL-lowering
mechanisms. One study examined the effects of atorvasta-
tin on soluble adhesion molecules, interleukin-6 (IL-6)
and brachial artery endothelial-dependent flow mediated
dilatation (FMD) in patients with familial (FH) and non-
familial hypercholesterolemia (NFH) [93]. A total of 74
patients (27 FH and 47 NFH) were recruited. Fasting lipid
profiles, soluble intercellular adhesion molecule-1
(sICAM-1), soluble vascular-cellular adhesion molecule-1
(sVCAM-1), E-selectin, IL-6 and FMD were measured at
baseline, 2 weeks, 3 and 9 months post-atorvastatin treat-
ment (FH – 80 mg/day, NFH – 10 mg/day). In both
groups, compared to baseline, sICAM-1 levels were signif-
icantly reduced at 2 weeks, further reduced at 3 months
and maintained at 9 months (P < 0.0001). The IL-6 levels
were significantly reduced at 3 months and 9 months
compared to baseline for FH (P < 0.005) and NFH (P <
0.0001). In both groups, the FMD at 2 weeks was higher
than baseline (P < 0.005), with progressive improvement
up to 9 months. FMD was negatively correlated with
sICAM-1 and IL-6.

Bisphosphonates and Interleukin 6
Because of various modes of action observed in studies,
bisphosphonates have been classified into two groups.
Bisphosphonates (such as clodronate and etidronate) that
closely resemble pyrophosphate – a normal byproduct of
human metabolism – are incorporated into adenosine tri-
phosphate (ATP) analogues, which create compounds
that are believed to build up and lead to osteoclast death
[94]. The newest generation of bisphosphonates, which
contain nitrogen (such as pamidronate, alendronate, rise-
dronate, and ibandronate), are believed to inhibit protein
prenylation (post-translational modification) within the
mevalonate pathway. The mevalonate pathway is respon-
sible for the biosynthesis of cholesterol, other sterols, and
isoprenoid lipids. Isoprenoid lipids are key in the prenyla-
tion of intracellular signaling proteins (GTPases) that,
when activated, regulate a number of processes, including
osteoclast activity. It is believed that by impeding the
function of these regulatory proteins, bisphosphonates
block osteoclast functioning and cause apoptosis [95].

In patients with Paget's disease of bone, bisphosphonate
therapy is associated with a significant reduction of Inter-
leukin-6 soluble receptor (sIL-6R) serum levels [96].
Bisphosphonates inhibit the production of pro-inflam-
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matory cytokine interleukin-6 in tumoral cell lines of
human osteoblastic phenotype (MG63 and SaOs cells),
and in peripheral blood mononuclear cells (PBMC) [97].
Bisphosphonates also inhibit IL-1 and TNF-alpha stimu-
lated IL-6 release in cultures of human osteoblastic oste-
osarcoma cells [98]. Osteoblasts exposed to small
amounts of bisphosphonate elaborate a soluble inhibitor,
which interferes with osteoclast formation and develop-
ment [99]. Bisphosphonates prevent apoptosis of murine
osteocytic MLO-Y4 cells, whether it is induced by etopo-
side, TNF-alpha, or glucocorticoid dexamethasone [100].
Pamidronate and other bisphosphonates inhibit the pro-
duction by osteoblasts of the inflammatory cytokine inter-
leukin-6, a growth factor essential to myeloma cells [101].

Plant polyphenols, fatty acids and Interleukin 6
The beneficial skeletal effects of genistein, at dietarily
achievable levels, are mediated, by Interleukin-6. Inter-
leukin-6 production was decreased 40% to 60% in oste-
oblastic cells treated with genistein from either day 8–16
or day 12–16, at dietarily achievable concentrations (10(-
10) to 10(-8) M) (P < 0.05) [102]. In one study, Sophori-
coside (SOP) an isoflavone glycosid isolated from imma-
ture fruits of Sophora japonica (Leguminosae family)
inhibited the interleukin (IL)-6 bioactivity with an IC50
value of 6.1 microM [103]. In another study, treatment
with soybean isoflavones (10(-5) M), in the presence of
TNF-alpha (10(-10) M), for 48 h inhibited production of
IL-6 and PGE(2). The authors suggested that the antire-
sorptive action of soy phytoestrogen may be mediated by
decreases in these local factors [104]. One study investi-
gated the mechanisms of drug resistance associated with
the human prostate carcinoma PC-3 cell line. Endogenous
and exogenous IL-6 and exogenous OM up-regulated cell
growth and enhanced resistance of PC-3 tumor cells to
both etoposide and cisplatin. Both IL-6- and OM-medi-
ated effects were inhibited by the treatment of PC-3 with
an antisense oligodeoxynucleotide against gp130, the
protein kinase inhibitor genistein (GNS), or the monote-
rpene perillic acid (PA), a posttranslational inhibitor of
p21ras isoprenylation [105]. In another study, the effect
of inhibition of tyrosine kinase activity on thymidine
uptake into cultured human pituitary adenoma cells was
studied using two inhibitors, genistein and methyl-2,3-
dihydroxycinnamate (MDHC). Of 33 pituitary adenomas,
7 incorporated sufficient [3H]thymidine to be investi-
gated in the experiments. Genistein and MDHC both
potently inhibited thymidine uptake into these tumors,
with a mean inhibition by 74 mumol/L genistein of 61.96
+/- 18.96% (+/- SD inhibition of basal), by 740 mumol/L
genistein of 92.65 +/- 8.59%, and by 100 mumol/L
MDHC of 93.84 +/- 3.85%. Epidermal growth factor stim-
ulated thymidine uptake in 2 of the 3 clinically nonfunc-
tioning adenomas studied, and this stimulation was
inhibited by genistein. The authors concluded that tyro-

sine kinase activity is crucial for the integrity and growth
of pituitary adenomas in culture and that growth factors
released by pituitary adenomas potentially may maintain
and promote tumor growth by stimulating tyrosine kinase
activity [106].

Bacterial LPS induce a 12- to 16-fold increase in IL-1 beta,
IL-6, and TNF-alpha mRNA levels. In one study, this
increase was completely or more than 80% blocked by the
protein tyrosine kinase specific inhibitors herbimycin A
and genistein at the concentrations of 1.7 and 37 microM,
respectively. LPS-induced IL-6 protein synthesis and IL-6
bioactivity were also reduced to baseline levels by the PTK
inhibitors herbimycin A and genistein. Both PTK inhibi-
tors also reduced the LPS activation of nuclear factor-
kappa B (NF-kappa B), which is a transcription factor
involved in the expression of cytokine genes such as IL-6
and TNF-alpha [107].

Epidemiological evidence suggests that tea consumption
may have a strong effect on cardiovascular disease, but
there has been no prior description of the molecular
mechanisms involved. Epigallocatechin-3-gallate (EGCG)
is a prominent catechin present in green tea. Several exper-
imental studies have reported beneficial effects of EGCG
in inflammation and cancer [108-110]. NF-κB, is a tran-
scription factor centrally involved in the signal transduc-
tion of the inflammatory process. The common pathway
for activation of NF-κB involves phosphorylation of its
inhibitor protein IκB-α by IKK. Activation of IKK complex
is an essential step for NF-κB activation because the kinase
phosphorylates IκB-α and allow its degradation. Several
studies have demonstrated that EGCG is an effective
inhibitor of IKK activity. EGCG inhibits TNF-α-mediated
IKK activation in human epithelial cells. Yang and col-
leagues showed that EGCG in concentrations of 50 to 200
μM inhibited IKK activity in an intestinal epithelial cell
line [111]. In the Myocardial ischemia reperfusion study,
EGCG reduced reperfusion-induced activation of IKK,
degradation of IκB-α, and activation of NF-κB [112].
EGCG has been demonstrated to dramatically inhibit
chemokine induced neutrophil chemotaxis in vitro [113].
Tea polyphenols have also been noted to induce apopto-
sis and cell cycle arrest in a wide array of cell lines [114-
116]. EGCG affects several signaling mechanisms in
inflammation. Menegazzi and colleagues showed that
interferon-γ-induced STAT-1 activation in carcinoma-
derived cell lines of non-gut origin was blocked by EGCG
[117]. In another study, Watson and colleagues demon-
strated that EGCG significantly reduced INF-γ-induced
STAT1 activation in T84 epithelial and THP-1 monocytes/
macrophages [118].

Polyunsaturated omega-3 fatty acids reduce the secretion
of proinflammatory cytokines and down regulate the
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inflammatory process. 18-week n-3 PUFA diet supple-
mentation exerts a significant inhibitory effect on basal
and lipopolysaccharide (LPS)-stimulated IL-6 monocyte
production (50% and 46%, respectively, P < 0.05)
[119,120].

Atherosclerosis and statins
Changes in intima-media thickness (IMT) and arterial
lumen diameter-as measured by B-mode high-resolution
ultrasonography and quantitative coronary angiography,
respectively-are currently the only surrogate markers for
progression of atherosclerotic disease. There has been
increasing use of this imaging technique in observational
studies and interventional studies of lipid-lowering agents
over the last decade. These observational studies clearly
demonstrated an association between carotid IMT and
atherosclerotic disease. Of the interventional studies, the
recent Arterial Biology for the Investigation of the Treat-
ment Effects of Reducing Cholesterol (ARBITER) trial
found that use of atorvastatin 80 mg daily for aggressive
lowering of plasma low-density lipoprotein cholesterol
(LDL-C) concentrations to below current target levels was
associated with significant IMT regression compared with
results obtained with less aggressive plasma LDL-C lower-
ing [121,122].

Atherosclerosis and bisphosphonates
In one study the effect of etidronate treatment on caroti-
darterial intima-media thickness was prospectively exam-
ined in 57 subjects with type 2 diabetes associated with
osteopenia. After 1 yr of therapy with cyclical etidronate
(200 mg/day for 2 weeks every 3 months), intima-media
thickness showed a decrease (mean ± SE, -0.038 ± 0.011
mm), which was significantly different from a change in
57 control subjects (0.023 ± 0.015 mm; P < 0.005). Car-
diovascular parameters were not changed after etidronate
treatment. The authors concluded that etidronate in clini-
cal dosage may have an antiatherogenic action, at least in
type 2 diabetes [123]. In another study, administration of
ethane-1-hydroxy-1,1-diphosphonate (EHDP) to swine
with pre-established atherosclerosis resulted in lower
lesion calcium concentration, smaller lesions and a
decrease in the area of lesions involved in necrosis [124].

Atherosclerosis, plant polyphenols and fatty 
acids
Cupric-ion-oxidized LDL (CuLDL) or endothelial cell-oxi-
dized LDL (ELDL) induces the activation by Tyr-phospho-
rylation of JAK2, one of the Janus kinase involved
upstream of STATs in the JAK/STAT pathway of cytokine
transduction. Oxidized LDL (OxLDL) also initiates STAT1
and STAT3 Tyr-phosphorylation and translocation to the
nucleus, with a more marked effect for the extensively
modified CuLDL. In one study, Genistein, a nonspecific
Tyr-kinase inhibitor, and AG490, a specific inhibitor of

JAKs, markedly prevented the CuLDL-induced enhance-
ment of STAT1 and STAT3 Tyr-phosphorylation and
DNA-binding activity, suggesting that JAKs are the main
kinases involved in STATs' activation by oxidized LDL
[125]. The effect of genistein on aortic atherosclerosis was
studied in New Zealand White rabbits. After provocation
of atherosclerosis with hyperlipidemic diet, the rabbits
were divided as hyperlipidemic diet group (HD), normal
diet group (ND) and hyperlipidemic plus genistein diet
group (HD + genistein) for 4 and half months. The aver-
age cross sectional area of atherosclerotic lesion was 0.269
mm2 after provocation. The lesion was progressed by con-
tinuous hyperlipidemic diet (10.06 mm2) but was
increased mildly by genistein (0.997 mm2), and
decreased by normal diet [126]. Angiotensin II (Ang II)
plays an important role in atherogenesis. One study inves-
tigated the effect of Ang II on the production of inter-
leukin-6 (IL-6) in rat vascular smooth muscle cells. Ang II
significantly increased the expression of IL-6 mRNA and
protein in a dose-dependent manner (10(-10) to 10(-6)
mol/L). The expression of IL-6 mRNA induced by Ang II
was completely blocked by an Ang II type 1 receptor
antagonist, CV11974. Inhibition of tyrosine kinase with
genistein, and inhibition of mitogen-activated protein
kinase with PD98059 completely abolished the effect of
Ang II [127]. The potent endothelium-derived vasoactive
factor endothelin-1 (ET-1) has been implicated in the
pathophysiology of atherosclerosis and its complications.
ET-1 stimulates the formation of proinflammatory
cytokines including Interleukin-6 and tumor necrosis fac-
tor alpha (TNF alpha) [128]. In one study ET-1 transiently
increased IL-6 mRNA compatible with regulation of IL-6
release at the pretranslational level. Electrophoretic
mobility shift assays demonstrated time- and concentra-
tion-dependent activation of the proinflammatory tran-
scription factor nuclear factor-kappaB (NF-kappaB) in ET-
1-stimulated human vascular SMC. A decoy oligodeoxy-
nucleotide bearing the NF-kappaB binding site inhibited
ET-1-stimulated IL-6 release to a great extent suggesting
that this transcription factor plays a key role for cytokine
production elicited by ET-1 [129].

Type 2 diabetes and Interleukin 6
Circulating levels of interleukin-6 (IL-6) are raised in insu-
lin resistant states such as obesity, impaired glucose toler-
ance (IGT), and type 2 diabetes mellitus (DM). Growing
evidence suggests that IL-6 is not only produced by fat
cells but is also capable of inducing insulin resistance in
these cells. The expected result of this in vivo, would be to
increase adipose mass and subsequently body mass index
(BMI). The IL-6 -174G > C common functional gene vari-
ant has consistently been associated with increased
plasma IL-6, insulin resistance, and increased cardiovas-
cular risk [130]. In The Women's Health Study (an ongo-
ing US primary prevention, randomized clinical trial
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initiated in 1992), the authors determined whether ele-
vated levels of the inflammatory markers interleukin 6
(IL-6) and C-reactive protein (CRP) are associated with
development of type 2 DM in healthy middle-aged
women. From a nationwide cohort of 27 628 women free
of diagnosed DM, cardiovascular disease, and cancer at
baseline, 188 women who developed diagnosed DM over
a 4-year follow-up period were defined as cases and
matched by age and fasting status with 362 disease-free
controls. Study results showed that baseline levels of IL-6
(P < .001) and CRP (P < .001) were significantly higher
among cases than among controls. The relative risks of
future DM for women in the highest vs lowest quartile of
these inflammatory markers were 7.5 for IL-6 (95% confi-
dence interval [CI], 3.7–15.4) and 15.7 for CRP (95% CI,
6.5–37.9). Positive associations persisted after adjustment
for body mass index, family history of diabetes, smoking,
exercise, use of alcohol, and hormone replacement ther-
apy. The authors concluded that elevated levels of CRP
and IL-6 predict the development of type 2 DM, and the
data support a possible role for inflammation in diabe-
togenesis.

Type 2 diabetes and bisphosphonates
Advanced glycation end products (AGE), senescent mac-
roprotein derivatives form at an accelerated rate in diabe-
tes and induce angiogenesis through overgeneration of
autocrine vascular endothelial growth factor (VEGF). In
one study, incadronate disodium, a nitrogen-containing
bisphosphonate, was found to completely inhibit AGE-
induced increase in DNA synthesis as well as tube forma-
tion of human microvascular endothelial cells (EC). Fur-
thermore, incadronate disodium significantly prevented
transcriptional activation of nuclear factor-kappaB and
activator protein-1 and the subsequent up-regulation of
VEGF mRNA levels in AGE-exposed EC. Farnesyl pyro-
phosphate, but not geranylgeranyl pyrophosphate, was
found to completely reverse the anti-angiogenic effects of
incadronate disodium on EC. These results suggest that
incadronate disodium could block the AGE-signaling
pathway in microvascular EC through inhibition of pro-
tein farnesylation [131,132]. In another study, the
bisphosphonate, pamidronate, given as a single dose led
to a reduction in bone turnover, symptoms and disease
activity in diabetic patients with active Charcot neuroar-
thropathy [133].

Type 2 diabetes and statins
In West of Scotland Coronary Prevention Study
(WOSCOPS) [134], development of type 2 diabetes mel-
litus (DM) was found to decrease by 30% in pravastatin-
treated patients. One study investigated the effects of an
HMG-CoA reductase inhibitor, atorvastatin, on insulin
sensitization in performed in chow fed Zucker lean and
fatty rats treated with atorvastatin 50 mg/kg/day

(ATORVA_50) and results were compared to Zucker lean
and fatty rats treated with drug vehicle only (CONT).
Treatment with atorvastatin resulted in a dose-dependent
improvement in whole body insulin sensitivity in both
lean and fatty rats, with an approximately two-fold
increase in glucose infusion rate and glucose disposal
(Rd) in ATORVA_50 versus CONT (p < 0.01) [135].
Another study investigated the effects of atorvastatin on
the glucose metabolism and insulin resistance of KK/Ay
mice, an animal model of type 2 diabetes, were investi-
gated. Atorvastatin significantly decreased the non-HDL-
cholesterol level in the oral glucose tolerance test, inhib-
ited increase in the 30-min glucose level, decreased
plasma insulin levels before and 30 and 60 minutes after
glucose loading, and decreased the insulin resistance
index, compared with corresponding values in controls,
indicating that atorvastatin appeared to improve glucose
metabolism by improving insulin resistance [136].

Type 2 diabetes, plant polyphenols and fatty 
acids
Nutritional intervention studies performed in animals
and humans suggest that the ingestion of soy protein asso-
ciated with isoflavones and flaxseed rich inlignans
improves glucose control and insulin resistance. In ani-
mal models of obesity and diabetes, soy protein has been
shown to reduce serum insulin and insulin resistance. In
studies of human subjects with or without diabetes, soy
protein also appears to moderate hyperglycemia and
reduce body weight, hyperlipidemia, and hyperinsuline-
mia, supporting its beneficial effects on obesity and diabe-
tes [137]. Recent studies have provided evidence that soy
consumption alleviates some of the symptoms associated
with Type 2 diabetes such as insulin resistance and glyc-
emic control [138,139]. Isoflavones may improve lipid
and glucose metabolism by acting as an antidiabetic PPAR
agonist [140] The beta subunit of the signalsome –
IKKbeta, a crucial catalyst of NF-kappaB activation – is an
obligate mediator of the disruption of insulin signaling
induced by excessive exposure of tissues to free fatty acids
and by hypertrophy of adipocytes. IKKbeta plays a crucial
role, not only in the induction of insulin resistance, but
also atherogenesis, a host of inflammatory disorders, and
the survival and spread of cancer. The polyphenols resver-
atrol and silibinin. inhibit or suppress the activation of
IKKbeta [141]. Epidemiologic studies have reported a
lower prevalence of impaired glucose tolerance and type 2
diabetes in populations consuming large amounts of the
n-3 long-chain polyunsaturated fatty acids (n-3 LC-
PUFAs) found mainly in fish [142].

Osteoporosis and Interleukin 6
Osteoporosis is a condition that is common with aging
and especially in post-menopausal women. The etiology
has often been ascribed to abnormalities in calcium
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metabolism. However many patients with osteopenia/
osteoporosis have in common pain and inflammation
and many inflammatory pain syndromes have osteope-
nia/osteoporosis as an accompanying feature [143].
Inflammatory joint disease, particularly rheumatoid
arthritis [144], is associated with bone resorption and
increased synovial fluid levels of IL-6 [145]. Another
example is the osteoporosis that is often present in Com-
plex Regional Pain Syndrome/Reflex sympathetic dystro-
phy (CRPS-I/RSD) [146]. Interleukin-6 mediated
inflammation has been shown to contribute to the proc-
ess of bone remodeling. This it does by stimulating osteo-
clastogenesis and osteoclast activity [147]. Elevated levels
of Interleukin-6 have been observed in conditions of
rapid skeletal turnover and hypercalcemia as in Paget's
disease and multiple myeloma [148]. In multiple mye-
loma, radiologic examinations reveals osteolytic lesion
and the most common finding is diffuse osteopenia
[149]. Adhesion of multiple myeloma cells to stromal
cells triggers IL-6 secretion by the stromal cells [150]. This
results in increased osteoclastic activity that in turn results
in osteoporosis, painful osteolytic lesions and hypercal-
cemia characteristic of multiple myeloma [151]. In their
youth, women are protected from osteoporosis because of
the presence of sufficient levels of estrogen. Estrogen
blocks the osteoblast's synthesis of Interleukin 6. Estrogen
may also antagonize the interleukin 6 receptors. Decline
in estrogen production is often associated with osteope-
nia/osteoporosis in postmenopausal women. Estrogen's
ability to repress IL-6 expression was first recognized in
human endometrial stromal cells [152]. Additional clues
came from the observations that menopause or ovariec-
tomy resulted in increased IL-6 serum levels [153],
increased IL-6 mRNA levels in bone cells [154], and
increased IL-6 secretion by mononuclear cells [155-157].
Further evidence for estrogen's ability to repress IL-6
expression is derived from studies, which demonstrated
that estradiol inhibits bone marrow stromal cell and oste-
oblastic cell IL-6 protein and mRNA production in vitro
[158] and that estradiol was as effective as neutralizing
antibody to IL-6 in suppressing osteoclast development in
murine bone cell cultures [159]or in ovariectomized mice
[160].

Osteoporosis and bisphosphonates
Bisphosphonates are inorganic chemical compounds that
bind to hydroxyapatite in bone and prevent osteoclastic
absorption of bone. Nitrogen-containing bisphospho-
nates (N-BPs) are potent inhibitors of bone resorption
widely used in the treatment of osteoporosis and other
bone degrading disorders including Paget's disease of
bone, hypercalcemia associated with malignancy, meta-
static bone diseases, such as breast cancer, multiple mye-
loma, and arthritis [161,162]. At the tissue level, N-BPs
reduce bone turnover and increase bone mass and miner-

alization. This is measured clinically as an increase in
bone mineral density and bone strength and a decrease in
fracture risk. N-BPs localize preferentially at sites of bone
resorption, where mineral is exposed, are taken up by
ostoclasts and inhibit osteoclastic activity. At the molecu-
lar level, N-BPs inhibit an enzyme in the cholesterol syn-
thesis pathway, farnesyl diphosphate synthase. As a result,
there is a reduction in the lipid geranylgeranyl diphos-
phate, which prenylates GTPases required for cytoskeletal
organization and vesicular traffic in the osteoclast, leading
to osteoclast inactivation [163,164].

Osteoporosis and statins
3-hydroxy-3-methylglutaryl coenzyme A reductase inhib-
itors (statins) have been shown to stimulate bone forma-
tion in laboratory studies, both in vitro and in vivo. Statin
use in most, but not all observational studies is associated
with a reduced risk of fracture, particularly hip fracture,
even after adjustment for the confounding effects of age,
weight and other medication use. This beneficial effect
has not been observed in clinical trials designed to assess
cardiovascular endpoints [165]. Men using statin drugs
are more likely to have a greater BMD of the spine (p <
0.005), and men who receive statin drugs for more than 2
yr are approximately half as likely to develop osteoporo-
sis. A similar effect is observed in women taking statins for
any length of time [166]. Statin use in women is associ-
ated with a 3% greater adjusted BMD at the femoral neck,
and BMD tends to be greater at the spine and whole body
[167]. Nitrogen-containing bisphosphonate drugs inhibit
the mevalonate pathway, preventing the production of
isoprenoids, which consequently results in the inhibition
of osteoclast formation and osteoclast function. Statins
decrease the hepatic biosynthesis of cholesterol by block-
ing the mevalonate pathway, and can affect bone metab-
olism in vivo through effects on osteoclastic bone
resorption. The ability of statin compounds to inhibit
bone resorption is directly related to HMG-CoA reductase
activity [168].

Osteoporosis, plant polyphenols, and fatty acids
Dietary supplementation with soybean isoflavone can
prevent postmenopausal bone loss. In one study, post-
menopausal women (n = 19), mean age 70.6 +/- 6.3 years
and mean time since menopause 19.1 +/- 5.5 years, were
given isoflavone supplements for 6 months. There was a
37% decrease in urinary concentrations of type 1 collagen
alpha1-chain helical peptide (HP), a marker of bone
resorption, during the isoflavone supplementation com-
pared with baseline (p < 0.05) and a significant difference
in mean (SE) HP excretion levels when isoflavone was
compared with placebo (43.4 +/- 5.2 vs. 56.3 +/- 7.2
microg/mmol creatinine [cr], p < 0.05). With isoflavone
supplementation, mean spine BMD at L2 and L3 was sig-
nificantly greater when treatment was compared with con-
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trol, with a difference between means of 0.03 +/- 0.04 g
and 0.03 +/- 0.04 g (p < 0.05), respectively. There were
nonsignificant increases from baseline for total spine
BMC (3.5%), total spine BMD (1%), total hip BMC
(3.6%), and total hip BMD (1.3%) with the isoflavone
treatment [169]. Data from a randomized, double-blind,
placebo-controlled, year long clinical trial has also sug-
gested that supplementation with the dietary phytoestro-
gen genistein (54 mg/day) may be as effective as hormone
replacement therapy in attenuating menopause-related
bone loss [170].

Beneficial effects of omega 3 fatty acids on bone mineral
density have been reported in rats and humans. In one
study, sham and ovariectomized (OVX) mice were fed
diets containing either 5% corn oil (CO), rich in omega-6
fatty acids or 5% fish oil (FO), rich in omega-3 fatty acids.
Bone mineral density was analyzed by DXA. The serum
lipid profile was analyzed by gas chromatography. Recep-
tor activator of NF-kappaB ligand (RANKL) expression
and cytokine production in activated T-cells were ana-
lyzed by flow cytometry and ELISA, respectively. Signifi-
cantly increased bone mineral density loss (20% in distal
left femur and 22.6% in lumbar vertebrae) was observed
in OVX mice fed CO, whereas FO-fed mice showed only
10% and no change, respectively. Bone mineral density
loss was correlated with increased RANKL expression in
activated CD4+ T-cells from CO-fed OVX mice, but there
was no change in FO-fed mice [171].

Aging, age-related disorders, and Interleukin 6
Evidence has linked IL-10 and IL-6 cytokine polymor-
phisms to longevity. Individuals who are genetically pre-
disposed to produce high levels of IL-6 have a reduced
capacity to reach the extreme limits of human life,
whereas the high IL-10-producer genotype is increased
among centenarians [172].

Telomere length is linked to age-associated diseases, with
shorter telomeres in blood associated with an increased
probability of mortality from infection or heart disease. In
patients with multiple myeloma (MM), telomere length
(TL) of MM cells is significantly shorter than that of the
patients' own leukocytes. In one study, TL negatively cor-
related with age and with interleukin-6 (IL-6) and beta2-
microglobulin levels [173]. Overproduction of IL-6, a pro-
inflammatory cytokine, is associated with a spectrum of
age-related conditions including cardiovascular disease,
osteoporosis, arthritis, type 2 diabetes, certain cancers,
periodontal disease, frailty, and functional decline. To
describe the pattern of change in IL-6 over 6 years among
older adults undergoing a chronic stressor, this longitudi-
nal community study assessed the relationship between
chronic stress and IL-6 production in 119 men and
women who were caregiving for a spouse with dementia

and 106 noncaregivers, with a mean age at study entry of
70.58 (SD = 8.03) for the full sample. On entry into this
portion of the longitudinal study, 28 of the caregivers'
spouses had already died, and an additional 50 of the 119
spouses died during the 6 years of this study. Levels of IL-
6 and health behaviors associated with IL-6 were meas-
ured across 6 years. Caregivers' average rate of increase in
IL-6 was about four times as large as that of noncaregivers.
Moreover, the mean annual changes in IL-6 among
former caregivers did not differ from that of current car-
egivers even several years after the death of the impaired
spouse. There were no systematic group differences in
chronic health problems, medications, or health-relevant
behaviors that might have accounted for caregivers'
steeper IL-6 slope. These data provide evidence of a key
mechanism through which chronic stressors may acceler-
ate risk of a host of age-related diseases by prematurely
aging the immune response [174]. Interleukin-6 is also a
causative factor in other manifestations of aging. Wrinkles
on the skin are a manifestation of aging. Excess sunlight,
smoking, and exposure to wind, heat, and harsh chemi-
cals causes the outer layers of the skin to thicken and cause
skin to wrinkle, sag and become leathery. Ultraviolet (UV)
radiation from the sun is widely considered as a major
cause of human skin photoaging and skin cancer. IL-6 is
produced by keratinocytes in vivo and in vitro and the
release is enhanced by UV light. A study was performed to
investigate the effect of a single UV dose eliciting moder-
ate to severe sunburn reaction on the production of IL-6
in vivo. Plasma of UV-treated human subjects was evalu-
ated for IL-6 activity by testing its capacity to induce the
proliferation of an IL-6-dependent hybridoma cell line
(B9). In contrast to plasma samples obtained before UV
exposure, post-UV-specimens contained significant levels
of IL-6 peaking at 12 h after UV irradiation. Plasma IL-6
activity was neutralized by an antiserum directed against
recombinant human IL-6 [175]. UV radiation-induced
proinflammatory cytokines mediated by NF-kappaB
reportedly play important roles in sunburn, skin damage,
premature aging, and increases the risk of developing
melanomas and other types of skin cancer. In one study,
immunohistochemical and Western blot analysis and
ELISA indicated that both nuclear p65 and secreted IL-6
were significantly (p < 0.05) induced by UVB (20, 30 mJ/
cm2) and UVA irradiation (10, 20 J/cm2). NF-kappaB
nuclear translocation and IL-6 secretion induced by UVB
and UVA were dramatically inhibited by treatment of
EGCG [176]. Higher levels of the systemic inflammatory
markers CRP and IL-6 are independently associated with
progression of age-related macular degeneration (AMD)
[177].
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Aging, age-related disorders, Interleukin-6 and 
gene therapy/modulation
Genetic polymorphisms involving a change of a single
base, fromguanine to cytosine, at position – 174 in the 5'
flankingregion of the interleukin-6 gene is of great impor-
tance becausethe G allele is associated with higher IL-6
production thanthe C allele. In vivo studies have found
basal IL-6 levels to be twice ashigh in volunteers with the
GG allele than in those with theCC allele. The polymor-
phism in the 5' flanking region, (an area important in
theregulation of gene expression) alters the transcrip-
tional response to stimuli such as LPS and IL-1 [178]. An
increased frequency of an Xba I Restriction Fragment
Length Polymorphism (RFLP, likelyto be due to 3' flank-
ing region insertions, has been describedin some patients
with SLE and elevated IL-6 levels [179]. Byusing polymer-
ase chain reaction (PCR)-RFLP and sensitive polyacryla-
mide gel electrophoresis, an association between
genotype for the 3' flanking region polymorphismand
peak bone mineral density in women has been demon-
strated [180]. Manipulating the genetic mechanismscon-
trolling the IL-6 levels and increasing the frequency of GG
alleles in the population would prevent aging and age
related diseases and be the key to eternal youth and
immortality. Gene therapy will aim to provide for targeted
gene transfer, controlled expression of the gene trans-
ferred and enhanced activity of the transferred gene prod-
uct. An alternate means of gene therapy is gene
modulation. In gene modulation, expression of an
already expressed gene is increased by introducing exoge-
nous normal genetic sequences and decreased by intro-
ducing antisense genes or gene fragments, or by
introducing vectors that can produce ribozymes that can
cleave specific mRNAs. Gene modulation can also be
achieved by the introduction of exogenous normal genetic
sequences that code for proteins that modulate the extent
of gene expression, or affect the processing, assembly or
secretion of gene products.

Conclusion
In conclusion, we have described the biochemical path-
way from cholesterol synthesis to interleukin 6 mediated
inflammation. Interleukin 6 mediated inflammation is
the gatekeeper and common causative factor for aging and
age-related disorders including Atherosclerosis, Periph-
eral Vascular Disease, Coronary Artery Disease, Oste-
oporosis, Type 2 Diabetes, Dementia and Alzheimer's
disease and some forms of Arthritis and Cancer. We have
clarified the relationship between some of these common
illnesses and we determine that pleiotropic effects of
bisphosphonates, statins and polyphenolic compounds
are mediated by inhibition of Interleukin 6 mediated
inflammation.

Isoprenoids, which are intermediates, generated in the
cholesterol biosynthesis pathway, may play a role as sig-
nificant as the end product cholesterol, in activation of
Interleukin 6 mediated inflammation. Isoprenoids are
generated by endogenous cellular cholesterol synthesis in
the body as well as by cholesterol synthesis in activated
monocytes during the inflammatory response. However,
isoprenoids are but one component of the signaling path-
way for Interleukin 6 mediated inflammation.

Inhibition of the signal transduction pathway for Inter-
leukin 6 mediated inflammation is key to the prevention
and treatment of aging and age-related disorders includ-
ing atherosclerosis, peripheral vascular disease, coronary
artery disease, osteoporosis, type 2 diabetes, dementia,
Alzheimer's disease and some forms of arthritis and can-
cer. Inhibition of Interleukin 6 mediated inflammation
may be achieved indirectly through regulation of endog-
enous cholesterol synthesis and isoprenoid depletion or
by direct inhibition of the interleukin-6 signal transduc-
tion pathway.

Statins, Bisphosphonates and Polyphenolic Compounds
have similar mechanisms of action and act on similar dis-
eases in the following ways:

1. Statins and Bisphosphonates inhibit the Mevalonate to
Cholesterol conversion pathway and cause isoprenoid
depletion; with inhibition of interleukin-6 inflammation.
Statins inhibit the enzyme HMG-CoA reductase and
Bisphosphonates inhibit the enzyme FPP Synthase.
Polyphenolic Compounds inhibit multiple pathways of
signal transduction for Interleukin 6 mediated inflamma-
tion including inhibition of tyrosine kinase activity, inhi-
bition of activation of NF-κB and inhibition of activation
of IKK complex.

2. Statins, Bisphosphonates and Polyphenolic Com-
pounds inhibit the JAK/STAT3 signaling pathway for
Interleukin 6 mediated inflammation.

3. Statins, Bisphosphonates and Polyphenolic Com-
pounds have common pleiotropic effects and decrease the
progression of atherosclerotic vascular disease and inhibit
bone resorption.

4. Combination treatment with agents that inhibit differ-
ent aspects of the signal transduction pathways for inter-
leukin 6 mediated inflammation, including Statins,
Bisphosphonates and Polyphenolic Compounds, will be
transformational and have better efficacy with fewer side
effects in the prevention and treatment of aging and age-
related disorders including atherosclerosis, peripheral vas-
cular disease, coronary artery disease, osteoporosis, type 2
diabetes, dementia and some forms of arthritis and
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tumors. Evidence of safety and efficacy of combination
treatment with inhibitors of Interleukin-6 mediated
inflammation should be sought from new clinical trials.

Statins, Bisphosphonates are just indirect inhibitors of
Interleukin-6 inflammation but yet both class of drugs
have enabled a significant decrease in mortality and mor-
bidity from these common illnesses.

Epidemiological evidence suggests that increased con-
sumption of plant derived polyphenolic compounds is
associated with decrease in mortality and morbidity from
these common illnesses. Newer therapies will include
delivering by gene therapy or gene modulation variations
and/or modifications of the interleukin-6 gene associated
with decreased or absent IL-6 production. Newer drugs
will include interleukin-6 inhibitor/antibody, interleukin-
6 receptor inhibitor/antibody, interleukin-6 antisense oli-
gonucleotide (ASON), gp130 protein inhibitor/antibody,
tyrosine kinases inhibitors/antibodies, serine/threonine
kinases inhibitors/antibodies, mitogen-activated protein
(MAP) kinase inhibitors/antibodies, phosphatidylinosi-
tol 3-kinase (PI3K) inhibitors/antibodies, Nuclear factor
κB (NF-κB) inhibitors/antibodies, IκB kinase (IKK) inhib-
itors/antibodies, activator protein-1 (AP-1) inhibitors/
antibodies, STAT transcription factors inhibitors/antibod-
ies, altered IL-6, partial peptides of IL-6 or IL-6 receptor, or
SOCS (suppressors of cytokine signaling) protein, PPAR
gamma and/or PPAR beta/delta activators/ligands or a
functional fragment thereof.

The public health significance of such new drugs and gene
therapy will be transformational.
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