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Alzheimer disease and platelets: how’s that relevant
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Abstract

Alzheimer Disease (AD) is the most common neurodegenerative disorder worldwide, and account for 60% to 70%
of all cases of progressive cognitive impairment in elderly patients. At the microscopic level distinctive features of
AD are neurons and synapses degeneration, together with extensive amounts of senile plaques and neurofibrillars
tangles. The degenerative process probably starts 20–30 years before the clinical onset of the disease. Senile
plaques are composed of a central core of amyloid β peptide, Aβ, derived from the metabolism of the larger
amyloid precursor protein, APP, which is expressed not only in the brain, but even in non neuronal tissues. More
than 30 years ago, some studies reported that human platelets express APP and all the enzymatic activities
necessary to process this protein through the same pathways described in the brain. Since then a large number of
evidence has been accumulated to suggest that platelets may be a good peripheral model to study the
metabolism of APP, and the pathophysiology of the onset of AD. In this review, we will summarize the current
knowledge on the involvement of platelets in Alzheimer Disease. Although platelets are generally accepted as a
suitable model for AD, the current scientific interest on this model is very high, because many concepts still remain
debated and controversial. At the same time, however, these still unsolved divergences mirror a difficulty to
establish constant parameters to better defined the role of platelets in AD.
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Introduction
Molecular features and pathogenesis of alzheimer disease
Alzhemeir’s Disease (AD) is a chronic progressive neuro-
degenerative disorder characterized by a devastating cog-
nitive and memory decline. It is the most common cause
of dementia in the elderly, affecting about 26 million
people worldwide, and whose prevalence has been calcu-
lated to quadruple by 2050 [1-3].
The first neuropathological case of a patient affected

by AD was described over 100 years ago, and the pres-
ence of senile plaques and neurofibrillary tangles in the
brain, two major hallmarks of AD, were described [4].
Senile plaques are characterized by the abnormal accu-

mulation of amyloid β-peptide (Aβ) in the form of β-plated
sheet fibrils, in nervous tissues and in blood vessels [5]. Aβ is
a 4 KDa hydrophobic molecule included into a much larger
membrane glycoprotein, named amyloid precursor protein,
APP [6], from which it is released upon limited proteolysis.
Aβ can exist as monomer, dimer, oligomer, protofibril, and
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fibrillar aggregates [7]. The propensity to self-association of
Aβ seems to depend on the peptide’s primary sequence.
Indeed the Aβ42, which makes up less than 10% of total
Aβ, is more prone to aggregate than the more abundant
Aβ40 [8].
Neurofibrillar tangles are mainly composed by a cyto-

skeletal microtubule-associated protein, called tau, that
becomes hyperphosphorylated, dissociates from micro-
tubules, and self-aggregates in the cytosol to form paired
helical filaments. However, since hyperphosphorylated
tau seems to be present also in other neurodegenerative
diseases, and since all the currently identified genetic
mutations responsible for AD invariably result in increased
formation of fibrillogenic Aβ, the amyloid cascade hypoth-
esis is the most widely accepted event for the pathogenesis
of AD [9].
Two forms of AD have been described: a sporadic or

senile form, and a familial (FAD) or presenil form. The
former one develops in 95-98% of cases [10,11], while
the familial cases are limited to only 2-5%.
The onset of the sporadic form of AD typically occurs

in patients after 65 years of age old, meanwhile the onset
of familial form occurs generally before this age. No genes
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are directly responsible for the onset of the sporadic AD,
but an association with polymorphisms of the gene ApoE
have been reported [12,13].
In nervous system APP plays major roles in synapto-

genesis and synaptic plasticity. It is expressed in human
brain, cerebrospinal fluid [14], kidney, spleen, heart and
adrenal tissues [15], but it also is expressed in peripheral
circulating cells as platelets [16]. App gene contains 19
exons, and at least 10 different mRNA can be generated
by alternative splicing. The most common isoforms
inlcude APP695, predominantly expressed in neuronal
tissues, and the isoforms APP751 and APP770 achieved
by the insertion of a serine protease inhibitory domain
of the Kunitz type family [17], which are abundantly
expressed in non-neuronal cells [18-20].
APP is a type I transmembrane glycoprotein with a

large extracellular N-terminal domain, and a short cyto-
plasmatic C-terminal domain [21]. APP proteolitic pro-
cessing is complex and results from the action of two
alternative pathways that involve either α-secretase
(non-amyloidogenic pathway) or β-secretase (amyloido-
genic pathway), besides the γ-secretase complex [22,23].
Only the amyloidogenic pathway generates and releases
Aβ peptide, composed by 40–42 aminoacidic residues
[24], while in the non-amyloidogenic pathway sAPPα
which may have neuroprotective effects, is produced [25].
Platelets and alzheimer disease
Anucleated blood platelets can be considered a periph-
eral available model to study those metabolic mechan-
isms, occurring in the central nervous system and
related to AD. Moreover, several intracellular signaling
pathways, important for platelet activation involve essen-
tial molecules, that have also been described to modulate
APP processing [26,27]. The major important platelet
agonist, thrombin, actives platelets by binding to mem-
brane receptors PAR1, PAR4, and glycoprotein GPIb-IX-
V, which is also able to interact with von Willebrand
Factor (vWF). Other important platelets agonists include
collagen that binds to integrin α2β1 and the glycoprotein
GPVI; ephinephrine, tromboxane A2, and ADP, that
bind to specific G protein-coupled receptors. Platelet
agonists activate specific signaling pathways, involving
different molecules and enzymes, which typically lead to
a transient increase of intracellular Ca2+ concentration.
The final step of platelet activation is the inside-out
stimulation of αIIbβ3 integrin activation, which binds fi-
brinogen and triggers an outside-in signaling pathway that
promotes stable and irreversible aggregation (Figure 1).
Platelets also store and release neurotransmitters, such

as serotonin, glutamate and dopamine [28,29], and some
neuron-related proteins such as N-methyl-d-aspartate,
NMDA, receptors.
Therefore, many researchers have focused their atten-
tion on platelets as a key peripheral element to understand
the pathogenesis of AD.
Animal models are often a valuable tool in basic and bio-

medical research, and several studies on mice, Drosophila
melanogaster, Caenorhabditis elegans and two types of fish,
the sea lamprey and the zebrafish [30] have provided es-
sential insights into the molecular mechanism of AD.
Transgenic mice are also extremely useful to investigate
platelet function, however so far no reports have addressed
the platelet biology in the most common murine model
for AD, such as the trangenic Tg2576 [31,32] or the
PD-APP transgenic mice [33,34].

The metabolism of amyloid precursor protein in platelets
Human platelets contain high levels of APP, which may
contribute to more than 90% of the circulating APP [20].
Platelets show concentrations of APP isoforms equiva-
lent to those found in brain [15], but the expression pat-
tern is different: the isoform APP695, which is the most
abundant in neuronal tissue, is nearly undetectable in
platelets, where the predominant isoforms are APP770
[16] and APP751 [35].
Platelet APP may represent the major source of Aβ

detected in whole blood [36], and recent findings have
suggested that platelet APP metabolism might also con-
tribute to the accumulation of Aβ in the brain and its
vasculature through the blood brain barrier [37,38].
Intact APP is present on the platelet plasma mem-

brane, and is encoded by platelet mRNA [39]. In fact
platelet APP is synthesized by the platelet precursor, the
megakaryocyte, in the bone marrow, rather than being
the result of platelet uptake of circulating APP [16]. Plate-
lets also express all the required enzymatic activities (α, β
and γ-secretases) to produce all the APP metabolites
(sAPPα sAPPβ and Aβ), that can be stored into intracellular
granules [40]. Proteolytic cleavage of platelet APP may
occur both within intracellular organelles of the secretory
pathway, and on the platelets’ surface [41,42]. sAPPα and
Aβ peptides can be stored in α-granules and released by
exocytosis upon platelet activation by thrombin or collagen,
which induce Ca2+-dependent degranulation [16,20,40-42].

Role of amyloid precursor protein in platelets
The physiological role of APP and of its metabolites in
platelets is not yet well understood. The full-length APP
may act as a receptor on the platelet surface, thanks to
the cysteine-rich domain, KPI [14,43]; platelet APP has
also been proposed to be crucial in the regulation of intra-
cellular Ca2+ concentration [44].
Several evidence indicate that platelet APP may play a

role also in blood coagulation thanks to KPI domain,
inhibiting the activity of the blood coagulation factors IXa,
XIa, and Xa [45,46]. Some studies indicate a physiological



Figure 1 Principal platelet membrane receptors and signal transduction pathways. Different receptors are stimulated by various agonists,
almost converging in increasing intracellular Ca2+ concentration. Platelet activation induces an inside out signaling pathway that active αIIbβ3
integrin. The subsequently link of αIIbβ3 with fibrinogen lead to an outside in signaling pathway that promotes irreversible aggregation.
Abbreviations: TXA2, tromboxane A2; THR, thrombin; PAR1, protease-activated receptor-1; VWF, Von Willebrand Factor; RGD, arginine, glycine,
aspartic acid; GPIb-IX-V, glycoprotein Ib-IX-V; FcγRIIA, cristallizable fragment γ receptorIIA; αIIbβ3, αIIbβ3 integrin; cAMP, cyclic adenosin
monophosphate; P2Y12, P2Y12 receptor; P2Y1, P2Y1 receptor; ADP, adenosin diphosphate; 5HT, 5-hydroxytryptamine; APP, amyloid precursor
protein; GPVI, glicoprotein VI; α2β1, α2β1 integrin; Syk, Syk tyrosin kinase; PLCγ2, phospholipase γ2; DAG, diacilglicerol; PKC, protein kinase C; IP3,
inositol 3-phosphate, Ca2+, calcium, PLA2, phspholipase A2; AA, arachidonic acid; COX, ciclooxigenase; PLCβ, Phospholipaseβ.
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function for platelet-derived APP in wound repair and in
the microenvironmental regulation of the coagulation cas-
cade. In fact, APP possesses growth factor activity [47],
and recombinant soluble forms of APP were demon-
strated to inhibit platelet aggregation and secretion
induced by ADP or adrenaline, indicating that platelet de-
granulation may result in a negative feedback regulation of
platelet activation [48].

Atypical metabolism of amyloid precursor protein in
coated-platelets
Coated-platelets are a recently described subset of plate-
lets that originate upon dual stimulation of platelets with
collagen and thrombin which retain more full length
APP on their surface than platelets activated with a sin-
gle agonist [49,50]. Prodan and coworkers reported that
there is an alteration of APP metabolism associated with
the production of coated-platelets. Moreover, an altered
production of coated-platelets in AD patients was also
documented [51,52]. This finding is in line with earlier
works of Davies and coworkers. However they observed
an alteration of coated-platelets formation only in the most
severely affected AD patients, while Prodan, observed an
increased propensity to form coated-platelets in the mildly
affected AD patients, that reverted during the progression
of the disease [51-53]. In a more recent study was shown
that elevated coated-platelet levels in patients with anam-
nestic MCI are associated with increased risk for progres-
sion to AD [54].
Release of Aβ peptides by circulating platelets
The main species of Aβ released from activated human
platelets is Aβ1-40. This is consistent with the observa-
tion that the circulating Aβ forms contributing to vascu-
lar amyloid deposits are primary composed by Aβ1-40,
while the predominant form in neuronal plaques is Aβ1-
42 [55-57]. Regarding the origin of Aβ peptides in blood,
two major theories have been proposed: Davies and cow-
orkers [58] suggested that circulating Aβ could derive
from the central nervous system through the blood-CSF
barrier, to become absorbed onto the surface blood cells,
mostly platelets [51] and to a significantly lesser extend
lymphocytes [18] and monocytes, which contain only
about 5% of the total APP in blood [59]. By contrast,
others authors proposed that there is an additional
release of Aβ from blood cells and from other non-
neuronal cells [60,61].
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There is no doubt that Aβ peptides are actively
released from platelets [62] and this process is signifi-
cantly modulated by thrombin [63] and by PGE2 [64].
Smirnov and coworkers identified several forms of Aβ
peptide processed and secreted by stimulated and non-
stimulated human platelets, including not only the clas-
sical Aβ peptides 1–40, 1–42, but also several additional
shorter, carboxyl-terminally truncated forms (Aβ1-39,
Aβ1-38, Aβ1-37, Aβ1-34), an amino-terminally trun-
cated form (Aβ2-42) and a further not identified form,
arbitrarily termed Aβ1-3X, which is probably an oxidized
form of Aβ1-40 [62]. All these different forms appear to
be released with different kinetics. These observations
are in agreement with the findings that a highly con-
served pattern of Aβ peptides (Aβ1-37, Aβ1-38, Aβ1-39,
Aβ1-40, Aβ1-42 ) was also described in cerebrospinal
fluid [65,66].
Platelet activation by Aβ peptides
Synthetic peptides have been very useful to study the
pathophysiological properties of Aβ. Aβ25-3 is a syn-
thetic peptide of 11 aminoacids located in the intermem-
brane domain of APP [21]. Aβ25-35 cannot be produced
through typical APP processing, but is often selected as
an alternative model to full-length Aβ because it retains
both its physical and biological properties; it aggregates
with time, forming fibrils with β-structure [67] and
retains the toxicity of the full-length peptide [68,69];
moreover its short length readily allows derivatives to be
synthesized and studied [70].
Aβ was able to activate platelets, and to trigger platelet

aggregation by stimulating intracellular signaling path-
ways involving PLCγ2 phosphorylation, PKC activation
and Ca2+ intracellular mobilization. Release of Aβ by
activated platelets may represent a mechanism whereby
Aβ deposition in the walls of blood vessels leads to
angiopathy occuring in aging and AD [71,72].
In vitro experiments showed that low doses of Aβ can

potentiate agonist-induced platelet aggregation, and that
higher doses are sufficient to directly trigger complete
platelet aggregation [73]. These effects were similarly eli-
cited by both Aβ25-35 and Aβ1-40 peptides, and have
been linked to specifically signaling pathways [74]. The
authors suggested a specific signaling pathway that initi-
ates with the activation of the thrombin receptor PAR1
by Aβ and leads to the subsequent subsequent Ras/Raf,
PI3Kinase and Akt cascade activation. Subsequent acti-
vation of p38MAPK leads to the stimulation of cPLA2,
which catalyses the release of arachidonic acid for TXA2

synthesis [75]. TxA2 is then able to trigger activation of
platelets and the consequent secretion of Aβ, raising the
possibility that Aβ activation of platelets may initiate a
vicious cycle of platelet activation and Aβ release, which
may play a relevant role in the development of cerebral
amyloid angiopathy [73].
More recent works established a structure-activity re-

lationship between the polymerization state of Aβ1-40
and its effects on platelet function: fibrillar Aβ1-40
increases ADP stimulated 5-HT serotonin efflux [76]. In
the presence of plasma Aβ1-40 fibrils were unable to
potentiate platelet aggregation. Perhaps the interactions
between plasma lipoproteins and Aβ peptides may rep-
resent a protective mechanism that reduces or blocks
Aβ toxicity [77]. It also been shown that Aβ1-40 fibrils
cause platelets activation supporting platelet adhesion
and aggregation via a mechanism that may involve the
expression of platelet fibrinogen receptors [74,75].

Platelets injury and Aβ release
Megakaryocytes are responsible for the production of
platelets, by a massive cellular reorganization that leads
to the formation of proplatelets. Proplatelets are
extruded into the circulation where shear forces trigger
their fragmentation, resulting in the release of platelets
[76]. It is widely accepted that to produce platelets,
megakaryocytes deliberately activate apoptosis [77-80].
Moreover, recent studies have suggested that circulating
platelets themselves can undergo apoptosis [81-83].
Activation of apoptotic pathways in platelets can be

also stimulated with the proapoptotic agent ionomicyn.
This leads to a significant increase in intraplatelet Aβ40,
but not Aβ42 [63], leading to the hypothesis that activa-
tion of apoptotic pathways in platelets determines an
altered processing of APP. Caspases are centrally involved
in apoptosis, and some reports indicate the presence of
caspase family enzymes in platelets and their activation by
extracellular agonists or during prolonged storage [84,85].
By western blot analysis, Casoli and coworkers detected
inactive procaspase-3 in resting platelets. Interestingly, in
ionomycin-treated platelets the proteolysed and active
form of caspase-3 was detected [86], suggesting the initi-
ation of apoptosis that eventually leads to overproduction
of Aβ1-40. Thus, Aβ peptide production can be viewed as
a consequence of a regular programmed cellular death.

Do platelets play a role in inflammatory processes in AD?
Besides having a key role in primary hemostasis, plate-
lets play an important role in inflammatory processes.
Among the most potent inflammatory signaling mole-
cules secreted by platelets there are chemokines (such as
platelet factor 4, PF4, RANTES, and MIP-1α, interleu-
kins (IL-1β, IL-7 and IL-8), prostaglandins and CD40L
[87]. RANTES has been identified in platelets α-granules,
are released after activation and their secretion from
PBMC is increased in AD [88]. MIP-1α is a chemokine
found in platelet α-granules too. Its high levels in T-cells
and brain microvessels of AD patients suggests that its
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upregulation could involve also platelets [89]. The platelet
endothelial cell adhesion molecules, PECAM-1 and ICAM-
1, were shown to be higher in plasma of AD patients versus
controls [90]. These proteins are present in platelets and
participate in trans-endothelial migration of leukocytes
when Aβ peptide acts as an inflammatory stimulus [91,92].
The uncontrolled activation of platelets in AD patients

can result in a chronic inflammatory reaction that can
mediate endothelial cell stress. This, in turn, may deter-
mine further platelet activation creating a vicious circle
that causes increased inflammation and release of Aβ. An
alternative hypothesis is that the systemic inflammation
present in AD determines platelet activation, stabilizing a
process that proceeds in a self-amplifying way [89].

Alteration of platelet sructure and function in ad
It is now clear that platelet APP processing in AD
patients is altered compared to normal control subjects,
and may represent a useful peripheral bio-marker for
the diagnosis of AD (Figure 2).

Secretases activities
In contrast to cells of neuronal origin, which pre-
dominantly process APP via the β-secretase pathway,
Figure 2 Abnormalities on AD platelets. Some membrane (secretases
ciclooxigenases) and mithocondrial activities (nitric oxide synthase, so
platelets. Alterations are evident in the APP processing itself, membrane fl
Ca2+ levels; in nitric oxide and peroxynitrite production. Abbreviations: PLC
complex; APP forms, amyloid precursor protein forms; CaM, calmodulin; ch
COX-1, ciclooxigenase-1, COX-2, ciclooxigenase-2; 5HT, 5-hydroxytryptamin
ONOO- peroxynitrite; Na+/K + −ATPase, sodium potassium ATPase pump; C
platelets, like other non-neuronal cells, favor proces-
sing by α-secretase. It is well established that sAPPα
concentration in platelets is much higher than Aβ
peptides [40].
In fact in addition to cause degranulation and release

of stored APP soluble fragments, platelet stimulation
promotes primarily the proteolysis of intact APP
expressed on the cell surface through α-secretase activ-
ity. This process is supported by ADAMmetalloproteinases,
and causes the release of sAPPα. In co-immunoprecipitation
and pull-down experiments a physical association between
the intracellular Ca2+ sensor calmodulin and APP was
documented, revealing a key role of calmodulin in the
regulation of non-amyloidogenic processing of APP [93].
In a previous study Smith and collaborators, observed

that α-secretase activity did not correlate with age, but
it remained constant during the entire lifespan, while
β-secretase activity in normal subjects significantly increased
with age [94]. Ageing is recognized as being the principal
risk factor for AD [95], and it is possible that the patho-
logical changes occurring in AD may initiate very early in
life. Moreover the increase of platelet β-secretase activity did
not correlate with mini-mental state examination (MMSE)
score, indicating that it did not occur as a secondary result
, phospholipases), cytosolic (monoamine oxidase,
dium potassium ATPase pump) are compromised in AD
uidity and cholesterol levels; in serotonin levels/uptake and intracellular
δ, phospholipase C δ; β, β-secretase; α, α-secretase; γ-secretase
l, cholesterol; MAO-B, monoamino-oxidase B; PLA2, phosholipase A2;
e; NOS, nitric oxide synthase; NO nitric oxide; O2- superoxide anion;
a2+, calcium.
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of the disease, and may even have preceded the onset of the
symptoms [96]. These findings corroborate what already
founded for the brains and cerebrospinal fluid of patients
affected by AD [97-99]. Other authors reported that plate-
lets from AD patients actually express increased BACE1
activity compared to controls [100,101]. In agreement with
the increased β-secretase activity and decreased α-secretase
activity, the Aβ levels have been found to be elevated in
AD platelets samples [102]. At the present, there are no
studies reporting alteration of the γ-secretase activity in
AD patients.
Membrane fluidity and cholesterol levels
Some years ago an alteration of platelet membrane fluid-
ity in AD was reported. This alteration had been
ascribed to alteration of the internal membranes rather
than to abnormal phospholipids synthesis [103-107].
A slight decrease in platelet membrane cholesterol

level in a small group of AD patients was reported [108].
Recent evidence [109] proposed that increased mem-
brane cholesterol results in increased β-secretase activ-
ity, that can generate more Aβ1-40. As predicted by
other studies [110], increased Aβ1-40 may promote in-
hibition of HMG-CoA reductase, and reduce de-novo
cholesterol biosynthesis. This model hypothesizes a nega-
tive feedback system between membrane β-secretase ac-
tivity and membrane cholesterol level in AD. Therefore,
it has been suggested that a perturbation of a possible
physiological homeostatic link between membrane chol-
esterol level and membrane β-secretase activity may occur
in AD. Treatment with statin may restore this link [109].
Phospholipases
A key enzyme in platelets signal transduction is the
phosphoinositide-specific phospholipase C, PLC. Its involve-
ment in AD dates back some years ago when Shimohama
and coworker demonstrated that the PLCδ-1 isoform
abnormally accumulates in the brain in AD [111]. Subse-
quently it was demonstrated that PLC activity was signifi-
cantly lower in the AD platelets than in controls, suggesting
an aberrant phosphoinositides metabolism in non-neuronal
tissues [112]. Moreover the activity of PLCδ1 isozyme is
reduced in AD patient homozygous for apoE genotype
carrying the ε3 allele, but was normal in patients with the
ε4 allele [113].
Phospholipase A2, PLA2, plays an essential role in the

metabolism of membrane phospholipids [114], but its
activation can also stimulates the secretion of APP [115],
and, on the other hand amyloid peptides are able to acti-
vate PLA2 in vitro [116]. PLA2 activity was found to be
increased in platelets from individuals with AD [117].
These data conflict with those of other studies in which
PLA2 activity in human platelets [118] as well as in
human brain AD [119,120] was found to be decreased in
AD samples.

Serotonin levels and uptake
Several studies have reported abnormalities in the cellu-
lar content of serotonin in AD, as well as alterations of
its uptake in different regions of the brains of AD
patients [121,122]. Studies performed on AD platelets
reported confused results concerning the uptake of sero-
tonin. While some works failed to detect any alteration
in the level of serotonin in AD patients compared to
controls [123], others documented a reduced uptake of
serotonin into AD platelets [124,125].
In accord to the diminished platelet serotonin con-

centration and increased plasma serotonin levels in
patients with AD, Sevush and coworkers, observed that
unstimulated platelets of AD patients exhibit greater ac-
tivation of than those of controls [126]. A recent work
shows a persistently enhancement of platelets activation
of AD patients, which may be related, on increased
lipid peroxidation associated with inadequate levels of
Vitamin E [127].
A straight correlation between the uptake of 5-hydro-

xytryptamine, 5-HT and cognitive state of the AD patients
was also reported. A significantly lower concentrations of
serotonin in platelets from AD patients was peculiar of
those subjects in the late phase of AD. Hence, the
decreased platelet serotonin concentration observed in the
late phase of AD might be related to a reduced serotonin
uptake [128].

Monoamine oxidase activity
Few studies performed on platelet MAO-B activity in
AD yielded inconsistent but intresting results: Adolfsson
and coworkers report increased MAO-B activity in pla-
telets and brain of AD [129], while Ahlskog did not find
any alteration of MAO-B activity in AD versus controls
[130]. More recent studies indicated that MAO-B activ-
ity might be used as a biomarker for the presence of
psychotic features in AD [131], and for the early or late
onset AD [132]. In the above cited work by Muck-Seler
and coworkers, the MAO-B activity was in line with
serotonin concentration: significantly lower in patients
in the late phase of AD compared to other phases of AD
or healthy controls. Authors have found a positive
correlation between MMSE scores and platelet MAO-B
activity in AD, thus indicating that more severe AD symp-
toms are associated to lower MAO-B activity [128].

Cyclooxygenase
Current data suggest that protein kinase C, along with
PI3K activity and Ca2+, is crucially involved in APP cleav-
age and secretion in human platelets, while COX is a
minor component of APP secretion pathway. By contrast,
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Aβ release is totally independent of both PKC and COX
activity, meanwhile Ca2+ plays an important role also in
the release of Aβ [54].
Other evidence linked to the action of COX enzymes

in brains, suggest a determinant role of COX as inflam-
matory marker in peripheral cells of AD, as platelets.
Activated platelets express almost exclusively, COX-1.

COX-2 isozyme is normally undetectable in most tissue,
but can be rapidly induced by proinflammatory or mito-
genic stimuli. Elevated concentrations of circulating cyto-
kines could upregulate COX-2 in megakaryocytes with a
subsequent increase of it content in platelets. Bermejo and
coworkers, reported an increased platelets levels of COX-
2 in AD and MCI patients compared to elderly controls,
indicating that platelet inflammatory pathways are acti-
vated, and that this could be considered an early event in
AD development [133].

Nitric oxide synthase and free radicals generation
Oxidative stress has been widely implicated both in
ageing and in pathogenesis of several neurodegenerative
disorders, including AD. Some studies showed an increase
of nitric oxide, NO and peroxynitrite anion, ONOO-, pro-
duction exclusively in platelets obtained from AD patients,
that was associated to a decreased Na+/K+-ATPase activity
in AD patients platelet membrane [134]. In a vertical study,
nitric oxide syntase, NOS, activity, was measured in plate-
lets of young controls, aged controls and AD patients, and
a significant increase was seen when AD were compared
with aged controls and, more significant, when compared
with young controls [135]. In a study performed on mild
and moderate AD patients, platelet aggregation was found
to be potentiated, and this was paralleled by a decline of
endothelial, constitutive NOS activity, causing a reduction
of the NO concentration in platelets. This reduction was
proposed to be responsible for the increased aggregation in
AD patients, since NO can inhibit platelet aggregation
[136]. This model, however, is in contrast with the well
documented notion that NO concentration and NOS activ-
ity is higher in AD than controls. Therefore, additional
works are necessary to determine the role of NO system in
AD platelets.

Alteration of APP processing
The alteration of APP processing in platelets from AD
patients was investigated at least by three different groups,
who measured the ratio between the different types
(or isoforms) of APP detectable in platelets on the basis of
a different apparent molecular mass on SDS-PAGE.
Rosenberg and coworkers determined the ratio of the

120–130 KDa APP isoform to the 110 KDa APP isoform,
and showed that APP processing in AD platelets is com-
promised compared to that of control subjects [101,137,138].
The authors propose that this difference may reflect
chronic platelet activation in patients with AD. They also
determined a direct correlation between the cognitive
decline by MMSE scores in AD patients during three
years of follow-up and APP isoform ratio reduction.
Liu and coworkers revealed that AD patients whose

MMSE scores declined in one year, had a greater reduc-
tion in platelet APP isoforms ratio than patients whose
MMSE scores did not decline [139].
An altered ratio among the different APP isoforms

detectable in platelets from AD patients was confirmed
by many other studies [59,140,141], as it was the demon-
stration of a positive correlation between APP ratios and
the progression of clinical symptoms, suggesting that
this peripheral parameter may be a marker of progres-
sion of the disease.
Subsequently studies reported that platelets of patients

carrying the mutation Met293Val in PS2 protein did not
show altered expression of APP isoforms ratio pattern con-
versely to what reported for sporadic AD patients [142].
It was demonstrated an association between early stages

of AD, or of Mild Cognitive Impairment, MCI, with a
reduction in platelet APP isoforms ratio, and suggested
that, since alteration of APP processing may be an early
event in AD, the characterization of APP ratio in platelet
could have a great diagnostic power [8,143-145]. In con-
clusion, platelet APP isoforms ratio may be a very import-
ant AD biomarker, as its evaluation is reliable and simple
test to be performed.

Conclusion
Initially identified as an exclusively brain tissue disorder,
in the last decades, AD, was revaluated as a more intri-
guing disorder involving many other peripheral tissues
and molecules in the organism. In fact, it is now well
established that biochemical alterations in AD patients
do not occur only in the brain, but even in blood vessels
and blood cells. Nowday researchers have recognized
that platelets are the principal components of human
blood to be affected not only in the onset but even in
the progression of AD. Platelets seem to mirror what
happens in nervous tissue during the evolution of AD,
and therefore represent the cellular type where to identi-
fied the early events in the onset of the disorder. Differ-
ently from neurons, platelets can be easily accessible and
constitute a valid cellular tool to study the pathogenesis
of AD. In this review we have summarized the limited
and often discordant results reported by different
authors in recent years. Overall all these studies, both
in vivo and in vitro, are aimed to understand in which
way affected proteins, enzymes, signal transduction path-
ways, inflammatory processes, spontaneous activation are
important in platelets to better define the molecular
pathogenesis of AD. Platelets are primary the principal
authors of hemostasis in the organism, but they also play
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a key role in Alzheimer Disease still remaining a potential
marker to understand the diagnosis of the disorder.
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