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Abstract

It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin
resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and
insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase
1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a
45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling
pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats.
The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise.
Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was
reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when
compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association
was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK
and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise,
the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights
into the mechanisms by which exercise restores insulin signalling in liver during aging.
Introduction
Aging in both humans and rodents is associated with in-
creased fasting and postprandial plasma insulin levels
[1,2] and decreased in glucose tolerance [2,3] suggesting
an insulin-resistant state. Dysregulation of hepatic glu-
cose homeostasis in aging associated with obesity is
mainly caused by increased gluconeogenesis. Suppres-
sion of hepatic glucose output has been shown to be an
effective therapeutic approach for controlling serum
high level glucose in type 2 diabetes. Insulin is an im-
portant hormone for suppressing liver gluconeogenesis
mainly through Akt mediated phosphorylation and in-
activation of Foxo1, a transcription factor that stimulates
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reproduction in any medium, provided the or
expression of gluconeogenic genes such as phosphoenol-
pyruvate carboxykinase and glucose-6-phosphatase (PEPCK
and G6Pase) [4-6].
Great efforts have been directed to study the mecha-

nism of insulin resistance in liver related with aging and
obesity. In this scenario, protein tyrosine phosphatase 1B
(PTP1B) has emerged as key phosphatase, induced by
inflammation, that has been shown to be a negative
regulator of the insulin signal transduction in insulin re-
sistant states. PTP1B knockdown in rodents protects
against diabetes and obesity, the two important meta-
bolic diseases in modern society. Not surprisingly,
PTP1B is a highly regarded target of the pharmaceutical
industry in the treatment of these disorders [7].
PTP-1B can diminish or block insulin action by tyro-

sine dephosphorylation of the insulin receptor (IR), ren-
dering it inactive, or by dephosphorylation of insulin
receptor substrate 1 and 2 (IRS1/2) inhibiting their inter-
actions with downstream signaling molecules in periph-
ery and central nervous system [8-10]. Consistent with
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these studies, complete absence of PTP-1B in mice
(PTP-1B−/−) results in increased systemic insulin sensi-
tivity, improved glucose tolerance, and enhanced liver IR
phosphorylation, establishing PTP-1B as a physiologic-
ally important IR and IRSs phosphatase [11,12].
Recent study showed at a molecular level that PTP-1B

expression and enzymatic activity were up-regulated in
liver of old mice [13]. In addition, Hirata and colleagues
demonstrated that the increase in PTP1B protein level
and/or association with IR in monosodium glutamate
(MSG) treated-rats may contribute to the impaired insulin
signaling mainly in liver and muscle [14]. 28-week-old-
MSG rats presented an increase in IR/PTP1B interac-
tion and a reduction in insulin signaling in liver, muscle
and adipocytes, and a more pronounced insulin resis-
tance [14]. Conversely, mice with liver-specific PTP-1B
-deficiency improved insulin sensitivity [15,16].
These data implicate PTP-1B in the development of

insulin resistance during aging and suggest that inhibition
of this phosphatase might protect against age-dependent
type 2 diabetes. In this context, physical exercise is known
to be essential in the treatment of type 2 diabetes. The ef-
fects of physical exercise on glucose uptake and disposal
have important implications for individuals with diabetes in
terms of chronic metabolic control and the acute regulation
of glucose homeostasis [17-19]. The molecular mechanisms
associated with insulin sensitivity that are enhanced in re-
sponse to exercise may be related to increased expression
and/or the activation of key proteins that regulate glucose
metabolism [20-22]. Several studies have demonstrated
that exercise improves insulin signaling in hepatic tissue
[5,6,23,24]; however, these effects of exercise have not yet
been investigated in insulin resistance during aging.
In the present study, we investigated whether the im-

provement in insulin sensitivity and insulin signaling,
mediated by acute exercise, could be associated with
modulation of PTP-1B in the liver of old rats.
Figure 1 Physiological and metabolic parameters of young, old (Old)
fat weight. C. fasting glucose. D, fasting serum insulin. Bars represent mean
Results
Physiological and metabolic parameters
In Figure 1, comparative data regarding young rats
(young), old sedentary rats (Old) and old rats submitted
to an acute exercise protocol (Old Exe) are presented.
Twenty-seven-month-old rats (Old and Old Exe) had a
higher body weight and epididymal fat pad weight com-
pared to young rats (Young). No significant variations
were found in body weight and epididymal fat in Old
Exe rats, after a single session of exercise, compared to
Old rats (Figure 1A-1B). The fasting plasma glucose
concentrations were similar between the groups; how-
ever, serum insulin was higher in old rats (Old and Old
Exe), when compared with young rats (Figure 1C-1D).
A single bout of exercise improves insulin signaling in the
liver of old rats
We observed increased insulin sensitivity 16 h after a
single bout of exercise with old mice. We found signifi-
cant impairment in the glucose disappearance rate (Kitt)
in old mice at rest when compared with young mice.
However, acute exercise restored the glucose disappear-
ance rate in old exe mice (Figure 2A). In addition,
insulin-induced increase in IRβ, IRS-1, Akt and Foxo1
phosphorylation in the liver of young mice, when com-
pared to saline injection. In old group at rest, IRβ, IRS-1,
Akt and Foxo1 phosphorylation were reduced after insu-
lin injection when compared with young mice. Con-
versely, in the liver of the exercised mice, IRβ, IRS-1,
Akt and Foxo1 phosphorylation increased compared
with mice at rest (Figure 2B-E, upper parts, respectively).
There was no difference in basal levels of IRβ, IRS-1,
Akt and Foxo1 phosphorylation between the three
groups (data not shown). Finally, the Foxo1 protein
levels were not different between the groups (Figure 1B-E,
lower parts).
and exercised old rats (Old Exe). A, total body weight. B, epididymal
s ± S.E.M. of six mice. *p <0.05 versus Young, #p < 0.05 versus Old.



Figure 2 Insulin signalling in liver of young, old (Old) and exercised old rats (Old Exe). A. The decrease in the glucose disappearance rate
(Kitt), induced by the aging associated with obesity, returned to the young rats level 16 h after acute exercise. Liver extracts from rats injected
with saline or insulin were prepared as described in the Methods. B, tissue extracts were immunoblotting (IB) with anti-phospho-IRβ antibody
(upper panel) or anti-IRβ antibody (lower panel). C, tissue extracts were also IP with anti-IRS-1 antibody and IB with anti-phosphotyrosine (pY)
antibody (upper panels), and IB with anti-IRS-1 antibody (lower panel). D, liver extracts were IB with anti-phospho-Akt and anti-Akt antibody
(upper and lower panel, respectively). E, liver extracts were IB with anti-phospho-Foxo1 and anti-Foxo1 antibody (upper and lower panel,
respectively). The results of scanning densitometry were expressed as arbitrary units. Bars represent means ± S.E.M. of n = 6 rats. ∗P < 0.05,
versus Young rats and #p < 0.05 versus Old.
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A single bout of exercise decreased the protein level of
PTP-1B in aged rats
Aging increased the protein level of PTP-1B in the liver
of old rats compared to control rats, a phenomenon that
was reversed by acute exercise (Figure 3A). To further
investigate the effect of acute exercise on this association
in aged rats, we evaluated IRβ/PTP-1B and IRS-1/PTP-
1B interaction in the liver of Old Exe rats. Aging rats
increased the IRβ/PTP-1B and IRS-1/PTP-1B associ-
ation in the liver when compared with young rats and.
Conversely, in the liver of Old Exe rats, IRβ/PTP-1B and
IRS-1/PTP-1B association was markedly decreased, when
compared with Old rats (Figure 3B-C). The membrane
was stripped and immunoblotted with anti-β-actin as
loading protein (Figure 3A). Neither treatment changed β-
actin protein levels.



Figure 3 Effect of acute exercise on PTP-1B protein levels and PTP1B association with IRβ and IRS-1. A, PTP-1B protein level in Old and
Old Exe rats were compared with Young group. B, tissue extracts were immunoprecipitated (IP) with anti-IRβ followed by immunoblotting
(IB) with anti-PTP1B antibody or anti-IRβ antibody (upper and lower panels). C, IP with anti-IRS-1 followed by IB with anti-PTP1B antibody to
evaluated the IRS-1–PTP1B association (upper panel). Liver extracts were also IP with anti-IRS-1 and IB with anti-IRS-1 antibody (lower panels).
Immunoblot was performed employing anti-β-Actin antibody as the loaded protein (lower panels in A). The results of scanning densitometry
were expressed as arbitrary units. Bars represent means ± S.E.M. of n = 6 rats. ∗P < 0.05, versus Young and #P < 0.05, versus Old.
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Acute exercise reduces PEPCK and G6Pase protein level in
hepatic tissue of old rats
We next observed the protein contents of PEPCK and
G6Pase in the livers of the Young, Old and Old Exe
groups under fasting conditions. In the hepatic tissue of
Old rats at rest, the PEPCK and G6Pase levels were
Figure 4 Protein level of PEPCK and G6Pase in the liver of Young, Old
immunobloting for PEPCK and G6Pase protein level, as described in Metho
B, tissue extracts were blotted (IB) with anti-G6Pase antibody. Immunoblot
(lower panels in A and B). The results of scanning densitometry are expressed
Young rats and #P < 0.05, versus Old.
increased when compared with young rats (Figure 4A
and B, respectively). Interestingly, 16 h after acute exer-
cise, the PEPCK and G6Pase protein levels were de-
creased in the Old Exe group when compared with the
Old group at rest (Figure 4A and B, respectively). The
membrane was stripped and immunoblotted with anti-β
and Old Exe groups. Liver extract rats were submitted to
ds. A, tissue extracts were blotted (IB) with anti-PEPCK antibody.
was performed employing anti-β-Actin antibody as the loaded protein
as arbitrary units. Bars represent means ± S.E.M. of n = 6 rats. ∗P < 0.05,
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-actin as loading protein (Figure 4A and 4B). Neither
treatment changed β-actin protein levels.

Discussion
The main finding of the present investigation is that
aging is associated with the increased of PTP-1B protein
level, resulting in the inhibition of insulin signaling by
dephosphorylating of IR and IRS-1 in the hepatic tissue.
On the other hand, it is known that genetic, pharmaco-
logical, and physiological PTP-1B inhibition increased
IRβ tyrosine phosphorylation and insulin signaling in
obese and old rodents [13,25-27]. Accordingly, it is rec-
ognized that the impairment of insulin action in liver is
a hallmark feature of type 2 diabetes mellitus.
It is well established that insulin resistance associated

with a progressive decrement in insulin action occurs
with aging [25,28,29]. This decline has been attributed
to chronological age itself and/or to a variety of second-
ary factors associated with the aging process, such as an
increase in body fat and/or in central adiposity, and a re-
duction in spontaneous physical activity [28,30,31].
Correlational studies that employed more precise mea-

surements of the confounding variables of body compo-
sition and fitness level found that age was responsible
for little or none of the change in glucose tolerance oc-
curring in the aged subjects [30-34]. Boden et al. found
that age did not correlate with any parameter of glucose
metabolism and that insulin sensitivity was determined
more by body fat than age [33]. In 344 Fischer rats (ani-
mals that not become obese as do some rodent strains),
insulin-stimulated glucose transport was reduced during
maturation (2–8 mo) but was unchanged during aging
(8–24 mo) [34].
In accordance, our results showed an increase in body

weight in Wistar old rats, and this was accompanied by
addition in adiposity (accumulation of epididymal adi-
pose tissue) when compared with young rats. Taken to-
gether, these data suggest that the insulin resistance
associated with aging may be caused, at least in part, by
the obesity commonly found in aging. Therefore, the re-
sults of this study are important because they show that
just one session of exercise is able to circumvent the
negative effects of aging/obesity. These data are similar
to the results of Ropelle and colleagues [5] that found
that acute exercise can improve insulin sensitivity and
insulin signaling in liver in the context of obesity. Cor-
roborating with this data, Oliveira and colleagues [23]
also showed that acute exercise improved insulin signal-
ing in hepatic tissue of obese rats.
In addition, the old rats developed insulin resistance

with impairment in the liver insulin signaling compared
with the young rats. The old rats presented high levels
of insulin, which is considered one of the main charac-
teristics of obesity, with no change in glucose levels on
fasting condition. The old rats seem to compensate the
increased metabolic load and obesity-induced insulin
resistance by the increase of insulin secretion from pan-
creas. Thus, these obese Wistar rats can maintain the
glucose levels similar to the control animals. These results
are in accordance with previous studies from our labora-
tory that used the same experimental model [25,28,35].
The ability of PTP-1B to negatively regulate insulin re-

ceptor kinase has been established at the molecular level
[15] and the ablation of the PTP-1B gene yields mice
displaying characteristics which suggest that inhibition
of PTP-1B function may be an effective strategy for the
treatment of diabetes and obesity during aging [11,13].
PTP-1B constitutes a family of phosphatases, including
PTP-1B, SHP1, SHP2, and LAR, which act to reverse
tyrosine kinase action [36]. PTP-1B is a major PTP im-
plicated in the regulation of insulin action, including in
the insulin-resistant state [11,37]. PTP-1B-deficient mice
are more sensitive to insulin and are more resistant to
diet-induced obesity than wild-type mice [10]. Diabetic
mice treated intraperitoneally with PTP-1B antisense oli-
gonucleotides have lower PTP-1B protein levels in liver,
leading to decreases in fat, plasma insulin, and blood
glucose levels [38]. These findings indicate that inhi-
bition or downregulation of PTP-1B is an effective strat-
egy for improving insulin sensitivity. In accordance, our
results show decreased activity and protein content of
PTP-1B in old rats after a single bout of exercise. Fur-
thermore, the reduction of PTP-1B activity in rats sub-
mitted to acute exercise was accompanied by increased
insulin signalling and correlates with increases in tyrosyl
phosphorylation of IR and IRS-1 and with reduction of
IR/PTP-1B and IRS-1/PTP-1B association in liver.
Downstream of IR and IRS-1, Foxo1 is an important

regulator that modulates the expression of gluconeogenic
genes in the nucleus, and this is mediated by Akt phos-
phorylation [5,6]. Low levels of Akt and Foxo1 phosphor-
ylation were found in the livers of obese mice [5]. In
accordance with these results, we observed that aging
associated with weight gain and adiposity reduced Akt ac-
tivity and Foxo1 phosphorylation, contributing to fasting
hyperglycemia. Interestingly, acute exercise increased Akt
and Foxo1 phosphorylation, reducing the fasting glucose
levels. Our results regarding the improvement in insulin
signaling, mediated by exercise in the hepatic tissue, were
also observed in previous studies [5,22,39].
Once phosphorylated, Foxo1 translocates to the cyto-

plasm in response to insulin and reduces gluconeogenic
gene transcription. In a previous study, Puigserver and
colleagues [4] showed that Foxo1 and PGC-1α can phys-
ically interact with each other and that the combined
action of PGC-1α and Foxo1 in various liver cell types
results in a synergistic induction of endogenous G6Pase
gene expression. Thus, PGC-1α stimulates G6Pase gene
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expression, in part, through a direct interaction with
Foxo1 bound to the G6Pase promoter. We observed
high levels of PEPCK and G6Pase in the liver of old rats.
These data are in accordance with several studies that
analyzed mice with severe insulin resistance [5,6,40].
Moreover, our data provide evidence that a single bout

of exercise improves insulin signaling, increases the basal
levels of Foxo1 phosphorylation, leading to a reduction in
PEPCK and G6Pase protein contents in old rats. The
activation of the insulin signaling pathway in liver and the
reduction in gluconeogenic enzymes activities (PEPCK
and G6Pase) culminate in a rapid reduction in hepatic glu-
cose production [5,6]. In contrast, when hepatic insulin
signaling is impaired, the suppression of gluconeogenic
pathways is inadequate, leading to elevated levels of glu-
cose and insulin responses during postprandial and fasting
conditions [5,6].
In this study, we did not evaluate PGC1α protein level,

PGC1α/Foxo1 association and the hepatic glucose pro-
duction. The measurement of insulin sensitivity through
insulin tolerance test is a whole body measurement;
however, the insulin signaling was enhanced in liver.
Thus, one limitation of our study is that we do not pro-
vide any evidence that hepatic glucose output was de-
creased in liver. However, in previous investigation, we
have shown that the reduction in Foxo1 and PGC-1α
content using different approaches diminished hepatic
glucose production, as evaluated by hyperinsulinaemic-
euglycaemic clamp procedures [5]. The reduction in
gluconeogenic gene levels observed in exercised old ani-
mals is in accordance with Heled and co-authors, which
showed that physical exercise enhances hepatic insulin
signaling and inhibits PEPCK activity in diabetes-prone
Psammomys obese [22]. Our results show a decreased
protein content of PTP-1B, 16 h after acute exercise in
old rats in parallel with an increase in IR autophospho-
rylation, and IRS-1 phosphorylation, which certainly
contribute to improved insulin sensitivity.
The molecular mechanisms that account for this effect

of physical activity on decreased expression PTP-1B are
not completely known. Recently, Sun et al. show that
SIRT1 is downregulated in insulin-resistant cells and tis-
sues and that knockdown or inhibition of SIRT1 induces
insulin resistance [41]. Furthermore, increased expres-
sion of SIRT1 improved insulin sensitivity, especially
under insulin-resistant conditions. Similarly, resveratrol,
a SIRT1 activator, enhanced insulin sensitivity in vitro
in a SIRT1-dependent manner and attenuated high-fat-
diet-induced insulin resistance in vivo. It is well es-
tablished that the effect of SIRT1 on insulin resistance is
mediated by the repression of PTP1B transcription at
the chromatin level [41]. The improvement of insulin
sensitivity by SIRT1 has implications in the treatment of
insulin resistance and type 2 diabetes.
In previous study, exercised old rats show increased in
SIRT1 expression in the skeletal muscle when compared
with old rats at rest [25]. Thus, it is possible that this
reduction in PTP1B in exercised rats may be mediated,
at least in part, by an increase in SIRT1. Since exercise
increase expression SIRT1 [42,43], we believe that other
beneficial effects of exercise may also be mediated by
this sirtuin. These data are important since inflammation
inhibition in the liver represents a potential target ther-
apy to combat the insulin resistance and development of
nonalcoholic fatty liver disease.
Other data suggest that PTP1B overexpression in mul-

tiple tissues in obesity is regulated by inflammation.
Zabolotny and colleagues determined that tumor necro-
sis factor alpha (TNFα) administration increased PTP1B
mRNA levels in skeletal muscle, adipose tissue, liver and
hypothalami of mice [44]. Likewise, it was demonstrated
that TNFα-induced recruitment of NFkappaB (NF-κB)
subunit p65 to the PTP1B promoter in vitro and in vivo
[44]. On the other hand, we demonstrated that acute ex-
ercise improved insulin sensitivity in the skeletal muscle
of obese [45,46] and aged animals [25] by reducing I-
kappa-B Kinase-beta (IKKβ) signaling and PTP1B activ-
ity, suggesting that physical exercise suppress the PTP1B
expression through the anti-inflammatory mechanism in
several tissues.
In conclusion, our data demonstrate that acute exer-

cise improves insulin sensitivity in the liver. The effect
of exercise on insulin action is further supported by our
findings that exercised rats show an increased the tran-
scription factor phosphorylation in old rats, a mecha-
nism by which exercise may diminish the content of the
glyconeogenic enzymes, PEPCK and G6Pase, and conse-
quently hepatic glucose production. These data provide
considerable progress in our understanding of the mo-
lecular events that link physical exercise to an improve-
ment insulin signaling in liver and fasting hyperglycemia
during aging.

Materials and methods
Animals
The experimental procedures involving rats were per-
formed in accordance with the guidelines of the Brazilian
College for Animal Experimentation and were approved by
the ethics committee at the State University of Campinas.
Six rats (n = 6) were used per group (young group: rats of
3 months of age), old sedentary rats (group Old: 21 months
of age), and exercised 21-month-old rats (group Old Exe).

Exercise protocol
Rats were adapted to swimming for 10 min during 3 days.
The animals swam in groups of three in plastic barrels of
45 cm in diameter that were filled to a depth of 60 cm, for
two 1.5-h long bouts, separated by a 45-min rest period
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and the water temperature was maintained at∽ 32°C. This
exercise protocol was adapted from a previously published
procedure [24]. After the last bout of exercise, animals
were fed ad libitum for 10 h and food was withdrawn 6 h
before the tissue extraction, with free access to water,
totalizing 16 hours of recovery. The rats used in the ex-
periment were anesthetized with an intraperitoneal (i.p)
injection of ketamine chlorohydrate (50 mg/kg; Ketalar;
Parke-Davis, Ann Arbor, MI) and xylazine (20 mg/kg;
Rompun; Bayer, Leverkusen), and decapitated.
Insulin tolerance test (ITT), serum glucose and insulin
quantification
The ITT was realized 16 h after the exercise protocol.
Briefly, 1.5 UI/kg of human recombinant insulin (Humulin
R) from Eli Lilly (Indianapolis, IN, USA) was injected intra-
peritoneally in anesthetized rats, the blood samples were
collected at 0, 5, 10, 15, 20, 25 and 30 min from the tail for
serum glucose determination. The rate constant for plasma
glucose disappearance (Kitt) was calculated using the for-
mula 0.693/(t1/2). The plasma glucose t1/2 was calculated
from the slope of last square analysis of the plasma glucose
concentration during the linear phase of declive [47]. The
plasma glucose level was determined by a colorimetric
method using a glucosemeter (Advantage. Boehringer
Mannheim, USA). Plasma was separated by centrifuga-
tion (1100 x g) for 15 min at 4°C and stored at∽ 80°C
until assayed. Serum insulin was determined using a com-
mercially available Enzyme Linked Immunosorbent Assay
(ELISA) kit (Crystal Chem Inc., Chicago, IL).
Protein analysis by immunoprecipitation and
immunoblotting
For tissue collection, the abdominal cavity was opened,
the portal vein exposed, and 0.2 ml of normal saline with
or without insulin (10-6 mol/L) was injected. After the
insulin injection, hepatic tissue fragments were excised.
The tissues were ablated, pooled, minced coarsely and ho-
mogenized immediately in extraction buffer (1% Triton-X
100, 100 mM Tris, Ph 7.4, containing 100 mM sodium
pyrophosphate, 100 mM sodium fluoride, 10 mM EDTA,
10 mM sodium vanadate, 2 mM PMSF and 0.1 mg of
aprotinin/mL) at 4°C with a Polytron PTA 20S generator
(Brinkmann Instruments model PT 10/35) operated at
maximum speed for 30 s. The extracts were centrifuged at
9000 x g and 4°C in a Beckman 70.1 Ti rotor (Palo Alto,
CA) for 40 min to remove insoluble material, and the su-
pernatants of these tissues were used for protein quantifi-
cation, performed by the Bradford method [48]. Equal
amounts of protein were used for immunoprecipitation
with 10 ml of the following antibodies: anti-IRβ and anti-
IRS-1 (Santa Cruz Biotechnology; Santa Cruz, California,
USA), as indicated.
The immunomplex were precipitated with protein A-
Sepharose 6 MB (Pharmacia; Uppsala, Sweden) and then
washed three times with 50 mM Tris (pH 7.4) containing
2 mM sodium vanadate, and 0.1% Triton X-100. After this
procedure, proteins were denatured by boiling in Laemmli
sample buffer containing 100 mM DTT, run on SDS-
PAGE, transferred to nitrocellulose membranes, which
were blocked, probed and developed as described previ-
ously [49].
Antibodies used for immunoblotting were anti-

phosphotyrosine, anti-phospho-IRβ, anti-IRβ, anti-IRS-1,
anti-phospho [Ser473] Akt, anti-Akt, anti-PEPCK, anti-
G6pase, anti-beta-Actin (Santa Cruz Biotechnology Inc.,
CA, USA) anti-phospho-Foxo1, anti-Foxo1 (Cell Signal-
ing Technology, MA, USA), anti-PTP-1B (Upstate Bio-
technology, NY, USA). Blots were exposed to pre-flashed
Kodak XAR film with Cronex Lightning Plus intensifying
screens at 80°C for 12–48 h. Band intensities were
quantified by optical desitometry (Scion Image software,
ScionCorp, Frederick, MD).

Statistical analysis
Results are expressed as mean ± standard error of the
mean (SEM). Differences between the groups were eval-
uated using one-way analysis of variance (ANOVA).
When ANOVA indicated significance, a Bonferroni post
hoc test was performed. A probability of less than 0.05
was considered significant. The software used for ana-
lysis of the data was the Statistical Package for the Social
Sciences (SPSS) version 17.0 for Windows
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