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Abstract

Cellular senescence is an essentially irreversible arrest of cell proliferation coupled to a complex senescence-
associated secretory phenotype (SASP). The senescence arrest prevents the development of cancer, and the SASP
can promote tissue repair. Recent data suggest that the prolonged presence of senescent cells, and especially the
SASP, could be deleterious, and their beneficial effects early in life can become maladaptive such that they drive
aging phenotypes and pathologies late in life. It is therefore important to develop strategies to eliminate senescent
cells. There are currently under development or approved several immune cell-based therapies for cancer, which
could be redesigned to target senescent cells. This review focuses on this possible use of immune cells and
discusses how current cell-based therapies could be used for senescent cell removal.
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Background
Cellular senescence entails an essentially irreversible
arrest of proliferation in damaged or stressed cells that
are at risk of malignant transformation [1, 2]. Two main
pathways establish and maintain this growth arrest,
which is a potent anti-cancer mechanism. One pathway
is governed by p53 (a tumor suppressor and trans-
criptional regulator) and p21 (a cyclin-dependent kinase
(CDK) and cell cycle inhibitor). The other pathway is
governed by p16INK4a (a tumor suppressor and CDK/cell
cycle inhibitor) and pRB (a tumor suppressor and tran-
scriptional regulator). Several stimuli can trigger these
pathways, leading to senescence in cultured cells and
in vivo [3]. Important stimuli for senescence include rep-
licative exhaustion, which generally results in telomere
attrition (also known as replicative senescence) [4], and

DNA-damage such as that caused by ionizing and, to
some extent, non-ionizing radiation [5]. In addition,
some chemotherapeutic drugs such as doxorubicin or
bleomycin also cause DNA damage, and other drugs
such as abemaciclib or palbociclib inhibit CDKs directly
to induce a senescence arrest [6]. Consistent with senes-
cence being an antitumor mechanism, the activation of
certain oncogenes such as RAS or BRAF leads to
oncogene-induced senescence (OIS) [3, 7]. Further,
events that disrupt mitochondrial function triggers a
mitochondrial dysfunction-associated senescence (MiDAS)
arrest [8], and oxidative stress [9, 10] and inhibitors of
DNA methylases or histone deacetylases [6] also cause a
senescence arrest (Fig. 1).
The senescence arrest is generally coupled to a com-

plex senescence-associated secretory phenotype (SASP)
[11]. The SASP is conserved between mice and humans
[12], and even to some extent between mammals and
insects [13]. Its components include growth factors,
chemokines and cytokines, proteases, bioactive lipids
and extracellular vesicles, many of which are pro-
inflammatory [14]. The number of senescent cells
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increases with age in most tissues, although they rarely
exceed a few percent. Nonetheless, mounting evidence
suggests that senescent cells can drive a surprisingly di-
verse array of aging phenotypes and diseases, mainly
through the SASP [8, 15–19]. The presence of senescent
cells also exacerbates several diseases including, but not
limited to, osteoarthritis [20], osteoporosis [21], athero-
sclerosis [22], Parkinson’s disease [23], and Alzheimer’s
disease [24, 25]. Importantly, eliminating senescent cells
in transgenic mouse models often delays age-related
tissue dysfunction and increases health span [26].

Furthermore, several laboratories are developing new
classes of drugs termed senolytics, which kill senescent
cells, or senomorphics, which alleviate SASP effects.
These drugs can help maintain homeostasis in aged or
damaged tissues, and postpone or ameliorate many age-
related pathologies [21, 23, 24, 26–30].
In contrast to their deleterious roles in driving aging

and age-associated diseases, senescent cells can have
beneficial roles during development and tissue repair, re-
generation and reprogramming. For example, in mice,
the SASP from senescent cells enhances reprogramming

Fig. 1 a In a normal tissue microenvironment, the diverse populations of cells are healthy. b In response to different stressors, some cells
undergo irreversible growth arrest and acquire a senescent phenotype. Senescent cells have an effect on the innate immune system by secreting
inflammatory factors that are part of the SASP. The SASP generally promotes the proliferation and polarization of M1 macrophages and the
suppression of M2 macrophages. c In response to the amplified inflammatory signals, NK cells are recruited to site(s) containing senescent cells,
which express NK activating ligands on their surface. These NKG2D ligands bind to NKG2D receptors present on NK cells leading to the death of
senescent cells. d However, some senescent cells have strategies to avoid elimination. For example, they can express inhibitory ligands that bind
to NKG2A receptors on NK cells, blocking their killing. The immune evasion of senescent cells can lead to their accumulation in tissues over time
and causes age-associated diseases
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in neighboring cells, and the short-term expression of
reprogramming factors promotes tissue regeneration
and reduces tissue aging [31, 32]. Senescent cells can
also promote wound healing in the skin and liver, and
either promote or suppress fibrotic responses depending
on the tissue and biological context [29, 33–37]. Senes-
cent cells also optimize mouse embryogenesis, and the
absence of senescent cells can delay development and
promote patterning defects [38, 39]. In adult animals,
senescent cells promote heart regeneration, and their
elimination can impair regeneration and repair in this
tissue [40, 41].
Current thinking is that the short-term presence of

senescent cells is beneficial, largely by adjusting the plas-
ticity of neighboring cells, but that their prolonged pres-
ence can be deleterious. This apparent dichotomy of the
impact of cellular senescence on health and disease sug-
gests that cellular senescence is an example of antagon-
istic pleiotropy, the evolutionary theory that predicts
there are traits that have been selected for their benefi-
cial effects early in life, but late in life these traits can be
maladaptive and drive phenotypes and pathologies asso-
ciated with aging [42].
The timely clearance of senescent cells is required to

maintain tissue and organismal homeostasis. Although
cellular senescence has been studied in detail in the con-
text of disease, the interaction of senescent cells with
immune cells have been less thoroughly investigated.
Due in large measure to the SASP [11, 14], senescent
cells likely interact extensively with the immune system
[43]. The production and secretion of SASP factors
(resulting in local inflammation) can be a potent means
to recruit immune cells. The SASP recruits macro-
phages, natural killer (NK) cells, neutrophils and T lym-
phocytes, which eliminate them, but senescent cells can
also interact with immune cells to avoid elimination.
The immune system was first shown to eliminate sen-

escent cells in a study demonstrating that reactivation of
p53 in hepatic tumors causes the tumor cells to senesce,
followed by ‘selective’ recruitment of macrophages, neu-
trophils and NK cells by the SASP-producing senescent
cells [44]. Subsequently, p53 was shown to promote the
secretion of chemokines like CCL2 to attract NK cells
for the clearance of senescent cancer cells [45]. A role
for the SASP in immune clearance of senescent cells was
further highlighted by the finding that the epigenetic
regulator BRD4, which dictates the enhancer and super-
enhancer landscape of SASP genes, determines the abil-
ity of the SASP to promote immune clearance of senes-
cent cells [46]. Thus, BRD4 inhibition significantly
reduces the SASP, which severely limits the ability of the
immune system to eliminate senescent cells. Further, ex-
pression of the scavenger receptor CD36 is sufficient to
induce a SASP in normal dividing cells, suggesting an

important role for this receptor in SASP signaling [47].
Here, we first describe the function of various cell types
of the immune system, and then discuss possible therap-
ies for the elimination of senescent cells by immune
cells.

Interaction of senescent cells with macrophages
Monocytes-macrophages belong to a class of multifunc-
tional innate immune cells prevalent throughout the
body, and maintain tissue homeostasis and repair by
regulating various biological processes such as angiogen-
esis and tissue remodeling [48–50]. These innate im-
mune cells recognize and eliminate bacterial pathogens
based on pathogen-specific molecular patterns [51].
Thus, macrophages are important players in resolving
infections. They also can promote certain diseases such
as asthma, rheumatoid arthritis, cancer and athero-
sclerosis [52].
These antigen-presenting cells are classically divided

into two phenotypically distinct subgroups (M1 and
M2), but with a high degree of plasticity somewhat simi-
lar to the Th1 and Th2 classification assigned to T cells
[49, 50]. Exposure to intracellular pathogens and their
components, such as lipopolysaccharide (LPS) or cyto-
kines such as interferon (IFN)-γ, can trigger an M1-type
phenotype in macrophages, which produce ‘pro-inflam-
matory’ molecules. These molecules include interleukins
(IL)-1β, IL-6, IL-8, IL-12 and IL-15, tumor necrosis fac-
tor (TNF)-α and chemokines to enhance the clearance
of pathogens [49]. M1-like cells also show increased
major histocompatibility complex (MHC) class II expres-
sion [53], and increased inducible nitric oxide synthase
activity [48].
M2-type macrophages are phenotypically distinct mac-

rophages that respond to type II cytokines such as IL-4
and IL-13, in addition to counteracting the effects of IL-
1β signaling [54]. These cytokines upregulate arginase-1,
which shifts metabolism to reduce nitric oxide produc-
tion but increase polyamine and proline production,
which stimulate cell growth, dynamic changes in colla-
gen and tissue repair [55]. M2-type macrophages also
produce high levels of IL-10 and matrix metalloprotein-
ase (MMP)-12, as well as chemo-attractants such as
CCL-8 and CCL-13 to attract eosinophils and basophils
to resolve tissue damage.
One primary function of macrophages is resolution of

inflammation by ‘clearing’ culprit damaged cells. The role
of macrophages in eliminating senescent cells was first
demonstrated a decade ago [56]. In mice, macrophages
clear senescent cells in the uterine stroma surrounding
the embryo implantation site following parturition [57]. In
addition, senescent hepatic stellate cells secrete a SASP
that not only attracts macrophages [58], but also converts
cytotoxic M1 cells to the M2 state [59]. Stellate cells
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undergoing senescence preferentially secrete IL-6, ICAM1
and IFN-γ, triggering M1 polarization, whereas proliferat-
ing stellate cells secrete IL-3, IL-4, and IL-5, among other
factors, which shift macrophages to the M2 state [59].
Aging diminished the ability of macrophages to respond
to a cytokine that shifted resident macrophages to an M1
state but caused paradoxical IL-4-driven polarization of
resident macrophages toward the M1 state [60]. The ex-
pression of p16INK4a in macrophages can suppress M1
polarization and hence the secretion of inflammatory fac-
tors by these cells [61]. On the other hand, the SASP se-
creted by senescent thyroid cells skews macrophage
polarization to M2 caused by prostaglandin E2 [62], a
prominent SASP factor [63].
There are several unanswered questions regarding the

interplay between senescent cells and macrophages and
how this interplay influences age-related inflammation
or what is now termed inflammaging [64]. Recent
findings in murine models show that some cells with
elevated p16INK4a and senescence-associated beta-
galactosidase (SA-β-Gal) expression (common bio-
markers of senescence) are likely macrophages, and that
these macrophages exhibit other phenotypes associated
with cellular senescence [65]. These senescent-like mac-
rophages increase with age, and might exacerbate the
rise in senescent cells and the SASP during aging [66] by
a paracrine effect, which was recently shown to occur
in vivo [67, 68]. Furthermore, eliminating this subset of
so-called senescent-like or pseudo senescent macro-
phages with an M2 phenotype induces a striking reso-
lution of inflammation [69]. Recent work also shows
that the SASP can promote macrophage proliferation
and increased expression of CD38, which enhances the
consumption of NAD by macrophages and might
explain the age-related decline in NAD levels [70].
M1 and M2 macrophages are still difficult to distin-

guish [71]. There is a consensus that macrophages
can switch their phenotypes to those associated with
M1 and M2 states in response to different microenvi-
ronments [72]. Indeed, M1 and M2 macrophages vary
in phagocytic activity in response to their microenvir-
onment [73, 74]. Thus, macrophages and senescent
cells may interact depending on the specific SASP sig-
nature and ligands present on senescent cells, which
in turn depends on the lineage of cells undergoing
senescence and the nature of the insult responsible
for inducing senescence [14] (Fig. 1).

Interaction of natural killer cells with senescent cells
NK cells were originally described as ‘Large Granular
Lymphocytes’ with natural innate ability to kill cancer
cells [75]. Since then, these innate immune cells were
shown to eliminate aberrant cells, including virally in-
fected cells, ‘stressed’ cells and cancer cells without prior

stimulation or activation [75]. NK cells appear to func-
tion primarily by surveilling MHC class I expression.
This function prevents the activation of NK cells against
‘self’ cells, but the lowering of MHC class I on damaged
or cancer cells allows NK cells to eliminate such cells as
a first line defense against aberrant cell proliferation and
cancer [76]. In humans, MHC class I molecules are rec-
ognized by a family of receptors called killer cell
immunoglobin-like receptors (KIR) [77], which can
either activate or inhibit NK cell killing [78]. Another
important receptor, natural killer group 2A (NKG2A)
(CD94), binds to the ubiquitously expressed HLA class I
molecule HLA-E to suppress NK cell cytotoxicity [79].
On the other hand, several activating receptors, such as
natural killer group 2D (NKGD2) [80], or DNAX
accessory molecule-1 (DNAM-1) [81], increase on NK
cells upon interaction with stressed cells. NK cells are
now characterized based on the expression of the
specific receptors that fine-tune NK cell-mediated cyto-
toxicity [82].
The differential expression of CD56 has most often been

used to identify NK cells in humans. Low (CD56dim) and
high (CD56bright) CD56 expression levels define major
subsets, along with an absence of CD3. CD56bright CD16−

cells are considered immature NK cells that secrete IFNγ,
whereas CD56dim CD16+ NK cells are responsible for
cytotoxicity [83]. Upon physical interaction with target
cells, cytotoxic NK cells release perforin, granzymes
(serine proteases) and proteoglycans contained in cyto-
toxic granules that kill the target cells [84].
One important consequence of the SASP is the attrac-

tion of NK cells [45]. NK cell-mediated clearance of sen-
escent cells is an essential aspect of tissue homeostasis
[85, 86] and tumor growth limitation [44, 87]. Impairing
NK cell function results in an accelerated accumulation
of senescent cells in various tissues, at least in animal
models [88]. Furthermore, aging can alter NK cell cyto-
toxicity and cytokine production [89]. Although NK cells
from different individuals vary substantially in their ex-
pression of surface receptors [90], the proportion of
CD56 dim NK cells increases with age [91], and cytokine-
producing CD56bright NK cells decline after age 60 years
[92].
DNA damage is known to induce the expression of

several NK cell receptors, such as NKG2D and DNAX
accessory molecule-1 (DNAM-1) ligand, on target cells
[93]. This induction has been utilized to increase the im-
mune clearance of multiple myeloma, where induction
of senescence upon treatment with genotoxic chemo-
therapeutic drugs like Doxorubicin enhances NK cell-
mediated elimination of cancer cells due to increased ex-
pression of DNAM-1 [94–96]. In addition, recent studies
show that senescent cells acquire mechanisms to evade
clearance by NK cells. For instance, senescent fibroblasts
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in culture and in the skin of older humans increase ex-
pression of HLA-E, which interacts with NKG2A to in-
hibit NK cytotoxicity [97]. Senescent cells can also shed
MICA and MICB, which are ligands for NKG2D recep-
tors expressed on NK cells and are primarily responsible
for NK cell targeting of senescent cells [98]. The shed-
ding of these ligands by metalloprotease secretion as
part of the SASP [99] can prevent NK cells from binding
to target cells [98] (Fig. 1).

Interaction of other immune cell types with senescent
cells
T cells are a type of lymphocyte that play a central role
in adaptive immune responses. These thymus-derived
cells mature by interacting with foreign antigens pre-
sented, along with MHC molecules, on antigen-
presenting cells (APCs) through their T cell receptors.
Depending on the microenvironment, these cells can
mature into cytotoxic CD8+ cells that aid in the matur-
ation of B cells upon subsequent interaction with patho-
genic antigens presented by APCs, helper CD4+ memory
cells, or natural killer T (NKT) cells [100]. CD8+ T cells
can also target senescent cells by interacting with
NKG2D ligands (described above) [97]. CD4+ T cells are
required for proper macrophage-dependent elimination
of senescent hepatocytes (induced by oncogene expres-
sion) in vivo, suggesting that Th1 lymphocytes partici-
pate in immune surveillance of senescent cells [101].
Further, oncogene-induced senescence in melanocytes
can activate CD4+ T cell proliferation, concurrent with
increased MHC II expression on senescent cells, sug-
gesting recruitment of the adaptive immune system to
prevent tumor growth [102]. Finally, neutrophils mediate
the immediate host response to bacterial and fungal in-
fections. Along with NK cells and macrophages, neutro-
phils also infiltrate tissues containing senescent cells
[44], and are susceptible to age-dependent decline in
numbers and phagocytic function [103].

Potential therapies for the immune clearance of
senescent cells
There are currently several immune cell therapies for
cancer under development or approved, which could po-
tentially be redesigned to target senescent cells. Cell-
based therapies have greatly improved in recent years
with the optimization of cell production, cell modifica-
tions, and storage [104]. The following section focuses
on how current cell therapies could be employed for
senescent cell removal.

Therapeutic use of CAR-T cells
Chimeric antigen receptor (CAR) T cell therapy has
been successful in recent years for treating diseases such
as cancer. CAR-T cell therapy uses autologous cells that

are genetically modified ex vivo to encode a synthetic re-
ceptor that binds a known antigen [105]. The modified
cells are then infused back into the patient to kill the
target cells. A universal CAR-T cell product could elim-
inate many of the harvesting and manufacturing prob-
lems associated with autologous or HLA matched CAR-
T cells. Advantages of CAR-T cells over other cell types
include their capacity to induce durable responses and
their ability to override tolerance to self-antigens
[106]. CAR-T cell targeting moieties are not restricted
to antibody targets, as non-antibody structures such
as aptamers and polypeptides have been used [107].
However, a potential downside to this approach is
that some antigens used to target cancer cells are also
present in healthy tissues, albeit generally at much
lower levels [108].
Evidence that there are senescent-specific surface

markers is spotty [43], and specificity needs further val-
idation. Nonetheless, once a good target has been identi-
fied, it can be used to create a CAR-T cell. Alternative
CAR-T strategies are being developed to improve speci-
ficity or effectiveness that could be helpful in the context
of senescent cells. One such alteration is the use of sev-
eral antigens for improved recognition [107], allowing
more specific recognition of senescent cells. The thera-
peutic potential of CAR-T cells in targeting senescent
cells stems from their success in the treatment of solid
tumors, as CAR-T cells are observed to reach deep into
the parenchyma of many different organs in which
senescent cells reside.

Therapeutic use of natural killer cells
As senescent cells are naturally targeted for elimination
by NK cells, it could be beneficial to use NK cells to
eliminate persistent pro-inflammatory senescent cells,
particularly as they accumulate during aging. The broad
cytotoxicity and rapid killing ability make NK cells ideal
for use in cancer immunotherapy. Indeed, long before
the era of CAR-T cells, researchers used NK cells to
fight cancers [109]. NK cells have been an attractive
choice for allogeneic immunotherapy for various cancers
such as acute myeloid leukemia, and can be easily iso-
lated and enriched from a variety of sources like periph-
eral blood, bone marrow or cord blood. NK cells
isolated from healthy young donors are not only fully
functional, but can also eliminate cancer cells by robust
graft-versus tumor response as they do not express
inhibitory receptors specific to host cells [110]. Even
though, technical, logistical and financial challenges are
still limiting factors for applications of circulating NK
cells as promising cancer therapies, over the past decade,
several studies demonstrated the safety and efficacy of
allogeneic NK cells against various hematological malig-
nancies and, to a lesser extent, solid tumors [111].

Kale et al. Immunity & Ageing           (2020) 17:16 Page 5 of 9



Further, induced pluripotent stem cells have been genet-
ically modified with an NK-CAR construct and differen-
tiated into NK cells. These cells were tested in a mouse
tumor model and were effective at eliciting a lower cyto-
kine level in recipients, indicating that these cells might
be safer [112], given that repeated administration is
needed. The same technology could be used to target
senescent cells by NK cells.
An additional benefit of NK-CAR cells over CAR-T

cells is that the former retains their ability to recognize
target cells through their native receptors, making it less
likely for tumor cells to escape by downregulating the
CAR target antigen. NK-CAR cells do not undergo
clonal expansion or quick immune rejection [113]. NK
cells do not require strict HLA matching and lack the
potential to cause graft-versus-host disease, an important
risk imposed by CAR-T cell therapy. NK-CAR cells
could therefore be an off-the-shelf allogeneic therapeutic
for the effective elimination of pro-inflammatory senes-
cent cells. On the other hand, senescent cells can escape
NK-mediated killing by overexpressing MMP3 (which
cleaves activating MICA ligands from the senescent cell
surface) [98] or HLA-E (an inhibitory ligand that blocks
NK cell killing) [97]. Unfortunately, MMP-3 inhibitors
have serious side effects and thus are not generally
useful.

Therapeutic use of macrophages
As discussed above, macrophages can eliminate senes-
cent cells. Transplanted macrophages can migrate into
tissues and become tissue-resident with much longer
half-lives and self-renewal abilities [114]. Targets for
macrophage cell therapies are more numerous than
other cell types and potentially include cancers, myocar-
dial infarcts, osteoporosis and Alzheimer’s disease [115].
Indeed, because macrophages are phenotypically plastic,
and cancer cells often express a “don’t eat me” signal,
these therapies have not been very successful in treating
cancer [115]. Whether this limitation poses a difficulty
in using macrophages against senescent cells is not clear.
Further, NFκB-dependent pro-inflammatory signaling
appears to upregulate CD47, at least in some cancers, fa-
cilitating their escape from immune surveillance [116].
Senescent cells generally upregulate NFκB activity, which
can activate CD47 transcription [117]. As a cell surface
molecule that promotes immune evasion by engaging
signal-regulatory protein alpha (SIRPα), CD47 serves as
an inhibitory receptor on macrophages [118]. It is pos-
sible that some senescent evade macrophage-mediated
killing by increasing CD47 signaling, in some cases by
secreting its ligand, thrombospondin. Notably, some
macrophages have been engineered to lack the SIRPα
co-receptor [119] to overcome this evasion. Moreover,
allogeneic macrophages from young donors or induced

pluripotent stem cells (iPS) [120] would probably be
more effective at removing senescent cells, as they have
a higher phagocytosis capacity [121].

Conclusions
A better understanding of the interplay between im-
mune cells and senescent cells would illuminate changes
that happen during aging, and also speed the develop-
ment of novel therapeutic interventions for eliminating
deleterious senescent cells. Different approaches could
be formulated to remove senescent cells using the nat-
ural ability of immune cells. What is needed now is a
more thorough understanding of the heterogeneity of
senescent cells and of the specific targets for immune
cells. In addition, it will be important to determine how
tissue resident macrophages interact with senescent
cells, and whether the propagation of paracrine senes-
cence increases the senescent cell burden. Finally, it will
be critical to understand the mechanisms by which
senescent cells escape immune clearance.
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