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Abstract

MicroRNAs (miRNAs) are regulatory noncoding RNAs important for many aspects of cellular processes including cell
differentiation and proliferation. Functions of numerous miRNAs have been identified in T cells, with miR-181a
regulating T cell activation thresholds during thymic T cell development and during activation of peripheral T cells.
Intriguingly, miR-181a is implicated in defective antiviral and vaccine responses in older individuals, as its expression
declines in naïve T cells with increasing age. Here, we review the pathways that are regulated by miR-181a and that
explain the unique role of miR-181a in T cell development, T cell activation and antiviral T cell responses. These
studies provide a framework for understanding how a decline in miR-181a expression in T cells could contribute to
age-related defects in adaptive immunity. We furthermore review the mechanisms that cause the age-related
decline in miR-181a expression and discuss the potential of restoring miR-181a expression or targeting miR-181a-
regulated pathways to improve impaired T cell responses in older individuals.
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Background
microRNAs (miRNAs) are small noncoding RNAs that
regulate gene expression post-transcriptionally through
translational repression or mRNA degradation. By targeting
many genes involved in common regulatory pathways, they
function as crucial modulators of fundamental biological
processes including cell development and differentiation
[1]. Early studies with T cell-specific miRNA-deficient mice
found alterations in T cell differentiation, cytokine produc-
tion, proliferation and survival [2, 3]. Importance and func-
tion of individual miRNA in T cell responses have also
been identified [4]. For example, miR-146a negatively regu-
lates nuclear factor-κB (NF-κB) signaling induced by T cell
receptor (TCR) activation [5]. The miR-17 ~ 92 cluster is

important for the differentiation of effector CD8 T cells as
well as T follicular helper cells [6, 7]. miR-155 is required
for optimal CD8 T cell responses to viral infections and
cancer [8].
The ability to mount protective immune responses

against infections declines with age, resulting in in-
creased mortality and morbidity from infections and
cancer as exemplified by the influenza virus and SARS-
CoV-2 infections [9, 10]. While vaccinations contribute
to prevent infectious diseases in children and young
adults, they are only moderately effective in older indi-
viduals [11]. The increased susceptibility to infections as
well as the poor vaccine efficacy in the aged population
are indicative of defective adaptive immunity including
T cell and B cell responses [12, 13]. Given the important
role of miRNAs in T cell immunity [4, 14], age-
associated changes in miRNA networks could account
for some of these functional deficits seen in older indi-
viduals. Indeed, expression of multiple miRNAs changes
with increasing age, such as upregulation of miR-146a
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and miR-155 in the naive CD8 T cell compartment [15]
and downregulation of multiple miRNAs in terminally-
differentiated effector CD8 T cells [16]. Also, miR-21
that is induced after T cell activation, is expressed at
higher amount in naïve CD4 T cells from older than
young adults [17]. Aberrant miR-21 overexpression leads
to sustained activation of several signaling pathways
downstream of the TCR by repressing negative regula-
tors, which in turn biases T cell differentiation toward
inflammatory effector cells over T follicular helper cells
and memory precursor cells in older individuals [17–19].
The miR-181 family is evolutionally conserved across

all vertebrates. It comprises four nearly identical mature
miRNAs (miR-181a, miR-181b, miR-181c, and miR-
181d) from three clusters on separate chromosomes;
miR-181ab1, miR-181ab2 and miR-181cd. The mature
members of the miR-181 family have the identical 5′
seed sequence that determines binding to 3′ untrans-
lated region (UTR) of their mRNA targets, suggesting
their functional redundancy in targeting a similar set of
genes. The miR-181 family is one of the most abundant
miRNAs in lymphoid tissue [20]. Importance of miR-
181a expression has been described during B cell devel-
opment in the bone marrow [21, 22] and regulation of
innate immune cell function such as macrophages and
dendritic cells [23, 24]. Nevertheless, functions of miR-
181a are best studied in T cells. miR-181ab1 deletion
completely abrogated mature miR-181a expression in
the thymus, while miR-181ab2 or miR-181cd deletion
had no effects, indicating that miR-181a is largely
expressed from the miR-181ab1 locus in T cells [22, 25].
miR-181a expression is dynamically regulated during the
life cycle of a T cell, from their development in the thy-
mus to differentiation and eventually aging in the per-
iphery. Here, we will review the diverse functions of
miR-181a in these T cell differentiation pathways and
discuss the implication of miR-181a deficiency in T cell
responses to infections and vaccinations in older
individuals.

miR-181a and T cell development
During T cell development in the thymus, selection of T
cells with low to intermediate affinity to self-antigens
and elimination of T cells with high affinity are the key
for a functional T cell repertoire that is able to maintain
central tolerance in the periphery. Therefore, setting the
TCR sensitivity to cognate peptide antigens plays an
important role in the selection processes. miR-181a was
initially described as an intrinsic regulator of TCR
signaling thresholds in thymocytes and T cells [26].
miR-181a is highly expressed in CD4 and CD8 double-
negative (DN) and double-positive (DP) thymocytes.
With differentiation, its expression is downregulated in
CD4 or CD8 single-positive (SP) thymocytes and mature

T cells in the periphery (Fig. 1), which corresponds to a
progressive decrease in TCR sensitivity to cognate anti-
gens [26]. Functionally, miR-181a targets several phos-
phatases such as SHP2, PTPN22, DUSP5 and DUPS6.
PTPN22 inactivates LCK and ZAP70 through dephos-
phorylation [27]. DUSP5 and DUSP6 are also negative
regulators of TCR signaling dephosphorylating extracel-
lular signal–regulated kinase (ERK) in the cytoplasm
(DUSP6) as well as the nucleus (DUSP5) [28]. By repres-
sing these multiple negative feedback loops downstream
of TCR signaling, miR-181a reduces the activation
thresholds and increases TCR sensitivity to cognate anti-
gens [26]. Consequently, ectopic expression of miR-181a
in mature T cells augments sensitivity of TCR signaling
upon TCR stimulation, as shown by increased phosphor-
ylation of LCK and ERK and increased calcium flux and
IL-2 production [22, 26]. Also, miR-181a overexpression
in thymocytes promotes the differentiation of DN to DP
cells [22, 29]. Conversely, antagonizing miR-181a or its
genetic deletion reduces TCR sensitivity and impairs
both positive and negative selection of developing DP
and SP thymocytes [22, 26, 30]. Accordingly, miR-181a
deficiency may fail to delete potentially autoreactive T
cells to self-antigens during negative selection in the

Fig. 1 Kinetics of miR-181a expression in T cells. A Changes in miR-
181a expression during T cell development in the thymus and during
aging in the periphery. B miR-181a expression changes during T cell
activation, differentiation and subsequent T memory cell homeostasis
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thymus [31]. Indeed, as compared to wild-type counter-
parts, mature T cells that developed in miR-181ab1
germline knockout mice showed increased reactivity in
response to immunization with self-antigen [30]. How-
ever, germline knockout of miR-181ab1 did not cause
spontaneous autoimmunity, suggesting that altering T
cell repertoire selection is not sufficient to induce dis-
ease [30].
Given that each miRNA can target multiple distinct

mRNA, miR-181a also controls T cell development by
targeting other molecules. miR-181a has been implicated
in the development of T cell acute lymphoblastic
leukemia (T-ALL) by activating oncogenic NOTCH
pathway through repressing its multiple negative regula-
tors [22]. During normal T cell development, NOTCH
signaling is known to transcriptionally induce the
transcription factor Tcf7, also important for T cell devel-
opment [32]. Therefore, miR-181a regulates T cell devel-
opment by controlling two major pathways independent
of calibrating TCR activation threshold. Disruption of
thymic T cell development was also observed in an inde-
pendent strain of miR-181ab1 knockout mouse [33].
Interestingly, upregulation of phosphatase and defect in
TCR-induced ERK phosphorylation were not observed
in this miR-181ab1-deficient mouse model. Instead,
miR-181a-deficient thymocytes had increased expression
of its target PTEN, which inhibits the PI3K-AKT-
mTORC1 signaling pathway, an important axis for
anabolic metabolism to support cell growth and prolifer-
ation [34]. Consequently, the thymic T cell development
was impaired in miR-181ab1-deficient mice, with altered
cellular metabolism, reduced cell proliferation and
increased cell death [33]. The reason for the different
biology in the two knockout strains is unresolved and
may represent off-target effects.
Controlling TCR signaling by miR-181a is also import-

ant for the development of regulatory T cells and several
innate-like T cell populations, including invariant
natural killer T (iNKT) cells and mucosal associated
invariant T (MAIT) cells, that are also generated from
double-positive thymocytes [35, 36]. In contrast, miR-
181a does not appear to control the generation of γδ T
cells which develop from DN thymocytes [37]. miR-
181ab1 deficiency impaired de novo generation of thymic
regulatory T cells [38], consistent with the requirement of
relatively strong TCR signals for their development [39].
Increasing TCR signaling strength through ectopic expres-
sion of the Nur77 family member Nr4a2 rescued impaired
regulatory T cell development in miR-181ab1-deficient
mice, further supporting a mechanistic link [38]. iNKT
cells recognize glycolipids through their semi-invariant
TCRs, and strong TCR signals are needed for selection
during their development [40]. Notably, generation of
iNKT cells was severely impaired in miR-181ab1-deficient

mice [25, 33]. Administration of agonistic ligand rescued
defective iNKT cell generation in miR-181ab1-deficient
mice [25], consistent with the notion that miR-181a defi-
ciency increases the activation threshold. In addition to
controlling TCR signaling, miR-181a-regulated cellular
metabolism also contributes to early iNKT cell develop-
ment, because genetic deletion of Pten restored iNKT cell
generation in miR-181ab1-deficient mice [33]. In addition
to iNKT cells, miR-181ab1 deficiency impaired generation
of MAIT cells that were restored with ectopic expression
of their invariant TCRα chain [41], suggesting that TCR
signal strength could be also involved during the develop-
ment of MAIT cells.

miR-181a and age-related defects in T cell
activation
Compared to thymocytes, miR-181a expression is lower
in peripheral naïve T cells and further reduced with dif-
ferentiation and activation with TCR stimulation [26].
Notably, miR-181a levels decline in naïve CD4 T cells
from older individuals [42]. Memory CD4 T cells have
lower miR-181a expression than naïve CD4 T cells and
also tend to have an age-associated decline (Fig. 1) [42].
Similar reduction in miR-181a expression is also found
in naïve CD8 T cells from aged humans and mice [15,
43]. In contrast, neonatal naïve CD4 T cells from umbil-
ical cord blood have relatively higher expression of miR-
181a than adult naïve CD4 T cells from peripheral blood
[44] suggesting that age-associated decline in miR-181a
levels may reflect a partially differentiated state of
aged naïve T cells, presumably due to homeostatic
proliferation.
This expression change is functionally important for

activation of peripheral naïve T cells (Fig. 2). Consistent
with the role of miR-181a in controlling TCR signaling,
aged naïve CD4 T cells have a defect in ERK phosphor-
ylation upon TCR stimulation, which is mainly caused
by age-associated increase in DUSP6 expression. Con-
versely, neonatal CD4 T cells have an increased TCR-
induced ERK activity due to higher miR-181a expression
[44]. With reduced TCR sensitivity, aged naïve CD4 T
cells therefore need higher antigenic stimulation to in-
duce activation markers CD69 and CD25 and produce
IL-2 at levels comparable with activated young naïve
cells [42]. Indeed, increasing the vaccine dose improves
vaccine efficacy in older individuals [45–47]. Overex-
pression of miR-181a, silencing of DUSP6 or pharmaco-
logical inhibition of DUSP6 activity restores defective
ERK signaling, IL-2 production and proliferative capacity
upon TCR stimulation, improving T cell responses of
old naïve CD4 T cells [42]. Nearly identical findings have
been observed in CD4 T cells from patients infected
with hepatitis C virus, with a decline in miR-181a and
increase in DUSP6 expression, suggesting that chronic
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viral infection might induce premature immune
aging [48].

miR-181a and age-related defects in antiviral T
cell responses
Given defective T cell activation with reduced miR-181a
expression in older individuals, the impact of miR-181a
loss in antiviral immune responses has been examined in
a mouse model with miR-181ab1 knocked-out in periph-
eral T cells (Fig. 2) [43]. Conditional deletion of miR-
181ab1 after thymic positive selection through the ex-
pression of Cre recombinase under the control of distal
Lck promoter did not disturb T cell development in the
thymus with normal distribution of naïve CD4 and CD8
T cells in the periphery. Consistent with DUSP6 overex-
pression dampening T cell activation, miR-181a deficiency
impaired expansion of antigen-specific CD8 T cells after
acute lymphocytic choriomeningitis virus (LCMV) infec-
tion in mice [43]. This defect resulted in a delayed viral
clearance, recapitulating aged immune responses to viral

infection with West Nile virus (WNV) and vaccination
with live-attenuated yellow fever virus (YFV) in older indi-
viduals [49–54]. Interestingly, LCMV-specific CD4 T cell
responses were increased in miR-181a-deficient compared
to wild-type mice. This increase was likely a compensatory
effect because adoptively transferred, LCMV-specific TCR
transgenic wild-type CD4 T cells proliferated more in
miR-181a-deficient than in wild-type mice upon LCMV
infection. Also, when wild-type and miR-181a-deficient
TCR transgenic CD4 T cells together were transferred to
the same mouse, the deficient T cells exhibited reduced
expansion after LCMV infection, suggesting that increased
CD4 T cell immunity shown in miR-181a-deficient mice
was due to a delayed viral clearance [43]. Indeed, higher
numbers of WNV-specific CD4 T cells were observed in
older individuals who had poor viral control [55]. Live-
attenuated YFV vaccine also induced prolonged CD4 T
cell proliferation in older individuals in parallel to delayed
viral clearance [54]. Therefore, the mouse model with
miR-181a-deficient peripheral T cells provides insights
into the relationship between antiviral CD4 and CD8 T
cell immunity and viral control in acute infections with in-
creasing age. Understanding how miR-181a deficiency
shapes T cell responses to chronic viral infections or tu-
mors that frequently occur in older individuals will be of
interest and remains to be addressed.
Consistent with increasing T cell activation threshold,

miR-181a deficiency skewed antiviral CD4 T cell re-
sponses toward selecting T cells recognizing antigenic
peptides with higher affinity, as shown by their strong
binding to cognate peptide/MHC II tetramers [43]. In
humans, WNV-specific memory T cells from individuals
who were infected at older age bound to the peptide/
MHC tetramers more strongly than those from individ-
uals who were infected at younger age [43], providing
evidence of repertoire selection. Similarly, mouse miR-
181a-deficient CD4 T cells responding to LCMV needed
lower amounts of antigenic peptide to elicit half-
maximum cytokine production than wild-type cells, fur-
ther supporting the notion that miR-181a deficiency
drives repertoire selection to higher functionality [43].
Interestingly, this repertoire selection was not associated
with a contraction in repertoire diversity at the clonal
level. Instead, CD4 T cell responses in miR-181a-
deficient mice exhibited increased clonal diversity with
increased expansion, presumably due to a delayed viral
clearance and recruitment of more clones into the re-
sponse [43]. miR-181a-dependent repertoire selection
was also evident during a recall response; miR-181a-
deficient memory CD4 T cells displayed stronger bind-
ing to tetramers, reduced amounts of antigenic peptides
to produce effector cytokines and a more contracted
TCR repertoire after secondary infection [43]. In sharp
contrast, CD8 T cell response did not show any evidence

Fig. 2 Functional consequences of the age-associated decline in
miR-181a expression on viral infection. Summary of shared features
of antiviral T cell responses observed in T cell-specific miR-181a-
deficient mice and in older individuals during T cell activation,
effector differentiation and memory T cell formation
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of repertoire selection towards higher affinity or higher
functionality with miR-181a deficiency. Also, the extent
of oligoclonality of CD8 T cells responding to LCMV
and their repertoire diversity were not different [43],
suggesting that expansion of individual CD8 T clones
were equally reduced [56]. In summary, the age-related
decline in miR-181a expression accounts for delayed
viral clearance due to defective CD8 T cell responses.
The ensuing altered antiviral CD4 T cell responses are
characterized by broadening TCR repertoires with
higher avidity and functionality to cognate antigens, try-
ing to overcome defective CD8 T cell responses.
TCR signaling strength has been implicated in directing

T cell differentiation, with strong activation signals being
required for the development of short-lived terminal ef-
fector CD8 T cells and relatively weak TCR signals favor-
ing generation of memory precursor effector cells and
central memory T cells [57–59]. Therefore, miR-181a-
regulated control of TCR activation threshold can deter-
mine T cell fates during a viral infection. Indeed, reduced
expansion of CD8 T cells in miR-181a-deficient mice
largely resulted from a defect in the differentiation of
short-lived effector CD8 T cells, while memory precursors
developed normally [43]. In addition, memory CD8 T cells
that were generated in miR-181a-deficient mice rapidly
acquired central memory phenotypes with higher expres-
sion of CD62L and CD27 and were capable of producing
multiple cytokines such as IFNγ, TNFα and IL-2 upon
restimulation ex vivo. However, they again failed to
expand upon subsequent reinfection and did not provide
increased protection. Importantly, miR-181a deficiency
particularly impaired generation of liver-residing tissue-
resident memory CD8 T cells [43]. Tissue-resident mem-
ory T cells play an important role in protecting hosts from
reinfections at local sites [60]. Also, during CD4 T cell dif-
ferentiation, miR-181a deletion selectively impaired gener-
ation of Th1 cells without altering Tfh cell differentiation
after LCMV infection [43]. Similarly, DUSP6 silencing also
enhanced IFNγ-producing Th1 cell differentiation under
Th1 polarizing condition of aged human CD4 T cells [42].
Similar to the role of signaling strength in effector vs.
memory differentiation in CD8 T cells, strong TCR signals
are required for generation of more differentiated Th1
CD4 T cells, while weak signals favor Tfh cell differenti-
ation [61, 62]. Thus, reduced miR-181a levels in naïve T
cells from older adults impact not only the recruitment of
antigen-specific T cell clones into the response but also
their differentiation, tissue migration, acquisition of
effector functions and recall capacity.

miR-181a deficiency causes replication stress in T
cell responses from old adults
One characteristic feature observed in T cell responses
from both miR-181a-deficient mice and older individuals

was a reduced expression of core histones after T cell
activation [63]. In general, histone loss is one of the
hallmarks of aging in several model systems [64, 65],
conversely, ectopic expression of histones extends life
span in yeast [66]. Histone levels did not differ in un-
stimulated naïve T cells, suggesting activation-induced
defects. Histone transcription is robustly induced at
the early S-phase of the cell cycle during proliferation,
in order to pack newly synthesized DNA into chro-
matin [67]. Failure to upregulate histone expression
causes DNA replication stress response and stalls cell
cycle progression [68, 69]. Consistent with this
notion, proliferating T cells accumulated at the early
S-phase in miR-181a-deficient mice and older individ-
uals. The p53 and ATR signaling pathways, indicative
of replicative stress [70], were abnormally activated,
as shown by increased phosphorylation of PRA32 and
CHK1, accumulation of DNA damage marker phos-
phorylated H2aX (γH2aX) and induction of cell cycle
inhibitor p21 [63]. This increased replication stress
and activation of the p53 pathway may explain recent
findings in defective vaccine responses of older indi-
viduals [11]. Upon vaccination with the live varicella
zoster virus (VZV) vaccine strain, old individuals had
expansion of antigen-specific CD4 T cells not differ-
ent from young adults. However, cell loss after peak
responses was accelerated, leaving behind fewer VZV-
specific memory CD4 T cells. This contraction
correlated with enrichment of gene signatures of cell
cycle regulation and DNA repair pathways, indicating
a failure in cell cycle regulation [71].
In mice and humans, defects in histone upregulation

resulted from overexpression of the miR-181a target
SIRT1, a NAD+-dependent histone deacetylase [72, 73].
SIRT1 was recruited to histone gene promoters, where it
reduced H3K9/14 and H4K16 acetylation locally and
consequently suppressed histone gene transcription
[74–76]. Importantly, restoring histone expression
through inhibiting SIRT1 rescued cell cycle progres-
sion, diminished replication stress and improved T cell
expansion and viral control [63]. In contrast to these
findings in activated T cells, SIRT1 expression is gener-
ally thought to decline with age in several tissues in-
cluding terminally differentiated effector memory CD8
T cells [77, 78], suggesting tissue and cell type specific
roles for SIRT1. Increasing SIRT1 expression or activity
may improve longevity [79]. Therefore, global SIRT1
inhibition may be harmful, however, transient SIRT1
inhibition immediately after vaccination or in the context
of an infection appears to be safe. In this regard, pharma-
cological SIRT1 inhibitor Ex-527 (Selisistat), which passed
phase II clinical trials to treat Huntington’s disease [80],
could be used therapeutically to improve vaccine-induced
T cell responses in older individuals.
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miR-181a and age-related defects in T cell
homeostasis
miR-181a is one of several miRNAs that changes in
expression with age in naïve CD8 T cells [15]. Pathway
analysis of downstream targets controlled by these miR-
NAs, including miR-181a, miR-146a, miR-155, let-7f,
miR-7 and miR-142, identified a loss of FOXO1 activity
with increasing age as significantly enriched. Expression
of IL-7R, one of FOXO1 targets, was particularly
reduced in aged naïve CD8 T cells [15], which may
account for alteration in T cell homeostasis and loss in
naïve CD8 T cell numbers with age [81, 82]. In mice,
miR-181a alone appears to control homeostatic prolifer-
ation of naïve T cells by targeting PTEN [33]. When
adoptively co-transferring wild-type and miR-181a-
deficient naïve T cells into Rag1-deficient lymphopenic
mice, relative proportions and numbers of miR-181a-
deficient naïve T cells were severely reduced, presumably
due to impaired PI3K signaling [33].

Age-related defects in transcriptional control of
miR-181a
In addition to pathways downstream of miR-181a activ-
ity, targeting the upstream mechanism underlying the
age-related miR-181a loss has the potential of improving
defective T cell responses in older individuals. Like all
miRNA genes, miR-181a is transcribed as a primary
miRNA (pri-miRNA), encompassing miR181a and b,
and subsequently processed into precursor miRNAs
(pre-miRNAs) in the nucleus and mature miRNA in the
cytoplasm. The age-associated decline in miR-181a levels
results from reduced transcription of pri-miR-181ab1
[73]. Analysis of putative enhancer regions of the miR-
181ab1 locus identified YY1 and TCF1 as major tran-
scription factors inducing pri-miR-181ab1 transcription.
Reduced expression of YY1 and TCF1 caused the age-related
decline in pri-miR-181a transcription (Fig. 3) [73, 83].
Accordingly, restoring YY1 or TCF1 expression upregulated

miR-181a and thereby improved T cell responses from older
adults.
YY1 has been implicated in many biological processes

such as cell growth and development, where it functions
as a transcriptional activator or repressor depending on
the interaction with other cofactors [84, 85]. Along with
the age-related decline in YY1 expression, naïve CD8 T
cells from the elderly show reduced chromatin accessi-
bility to YY1 binding sites at gene promoters [86, 87].
YY1 silencing had only minimal effects on the transcrip-
tome of unstimulated naïve CD4 T cells beyond miR-
181a expression [73]. Since YY1 is involved in control-
ling differentiation and function of Th1, Th2 and regula-
tory T cells in mice [88, 89], the reduced expression may
account for age-related differences in differentiation and
effector functions of activated T cells.
The age-related decline in TCF1 expression is particu-

larly intriguing. TCF1 is a transcription factor and an
effector molecule downstream of the WNT/β-catenin
pathway [90]. Inhibition of GSK3β stabilizes β-catenin
and the subsequent β-catenin/TCF1 complex induces
TCF1-dependent gene expression including TCF7 itself.
Pharmacological inhibition of GSK3β induced both
TCF1 and pri-miR-181ab1 transcription and conse-
quently improved T cell activation in older adults [83].
While important for T cell development [32], TCF1 also
maintains a less differentiated stem-like cell state of per-
ipheral T cell responding to acute and chronic viral in-
fections and cancer [91–93]. Interestingly, the reduced
expression of TCF1 in older adults persists throughout a
T cell response, contributing to the development of
terminally differentiated proinflammatory effector cells
rather than memory precursor cells [17, 94]. TCF1
declines after activation in effector cells, but is re-
expressed in memory cells, albeit at a lower level
compared to naïve cells. Whether TCF1 drives pri-miR-
181ab1 expression in memory T cells and its functional
consequences remains to be addressed.

Fig. 3 Mechanisms of reduced miR-181a levels in aged T cells. TCF1 and YY1 are the major transcription factors for transcription of pri-miR-
181ab1. Age-related reduction of TCF1 and YY1 expression results in a loss of miR-181a expression in old naïve CD4 T cells
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Conclusions
miR-181a expression is dynamically regulated during T
cell development in the thymus as well as during T cell
differentiation in the periphery. It is abundantly
expressed in the thymus, where miR-181a facilitates
thymic development of conventional T cells, regulatory
T cells, iNKT cells and MAIT cells by lowering TCR ac-
tivation thresholds through repressing multiple phospha-
tases. Albeit at lower levels in the periphery, miR-181a
similarly increases TCR sensitivity to antigens and pro-
motes activation of peripheral T cells. Due to a loss of
miR-181a expression, naïve T cells from older individ-
uals fail to respond properly to T cell stimulation, exem-
plified by suboptimal responses particularly for T cells
with lower affinity to antigens or for stimulation with
weaker antigenic signal.
Emerging data also indicate that miR-181a is involved

in other pathways important for T cell responses.
Controlling cellular metabolism by repressing PTEN is
crucial for the development of T cells and iNKT cells
[33]. Given that PTEN is targeted by multiple miRNAs
including miR-21 whose expression is increased with age
[17], contribution of miR-181a to PTEN expression in
aged T cells appears to be limited. The NOTCH path-
way is activated by miR-181a expression in T cells,
which contributes to T-ALL development [22]. Whether
the NOTCH pathway is attenuated in T cells from old
adults is undetermined. Interestingly, a mouse model
with miR-181ab1 deficiency in T cells found that miR-
181a is controlling many aspects of antiviral T cell re-
sponses, including T cell expansion, repertoire selection,
effector and memory T cell development and recall
responses, thereby recapitulating many age-related dif-
ferences in human T cell responses [43]. Some of the
phenotypes are clearly related to the role of miR-181a in
initial T cell activation signals and the ensuing effects on
T cell differentiation pathways. Others cannot be ex-
plained by TCR activation threshold, such as defects in
T cell proliferation and failed generation of tissue-
resident memory T cells with miR-181a deficiency. In
this regard, SIRT1 is another important target of miR-
181a in the context of aging. SIRT1 expression is in-
creased in naïve T cells of miR-181a-deficient mice as
well as older individuals. By repressing histone upregula-
tion during proliferation, it leads to cell cycle arrest and
excessive replication stress, thereby inhibiting T cell pro-
liferation [63].
These insights provide potential targets for therapeutic

interventions to restore impaired antiviral and vaccine
responses in older individuals [95]. Targeting miR-181a
or miR-181a-regulated pathways could improve T cell
activation and function. Enhancing T cell activation by
silencing DUSP6 was not sufficient to rescue prolifera-
tive defects of miR-181a-deficient T cells after LCMV

infection [43], suggesting cooperative effects of multiple
phosphatases. Inhibition of SIRT1 activity in old T cells
is promising, as it improves T cell proliferation by re-
storing histone upregulation and diminishing excessive
replication stress. The finding that an age-related decline
of YY1 and TCF1 and the consequently reduced pri-miR-
181ab1 transcription accounts for the low miR-181a levels
is intriguing [73, 83]. Indeed, ectopic overexpression of
YY1 or TCF1, or increasing WNT signaling improves T
cell activation through induction of pri-miR-181ab1.
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miRNA; SP thymocyte: CD4 or CD8 single positive thymocyte; T-ALL: T cell
acute lymphoblastic leukemia; TCR: T cell receptor; WNV: West Nile virus;
YFV: Yellow fever virus
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