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Abstract 

Background:  It has been widely accepted that monocytes are one of the central mediators contributing to inflam-
maging. However, it remains unclear whether aged monocytes, similar to aged T cells, have characteristics of hyperac-
tivation and increased expression of co-inhibitory molecules.

Methods:  Peripheral blood mononuclear cells (PBMCs) were isolated from young (21–40 years old), middle-aged 
(41–60 years old), and older human subjects (> 60 years old). Flow cytometry was used to monitor changes in the 
expression of surface molecules of monocyte subsets and cytokine-producing capacity.

Results:  We observed increased tumor necrosis factor-α: TNF-α and decreased interleukin-6 (IL-6) production in 
monocytes from older adults compared with young and middle-aged adults. Older adults had a greater percentage 
of intermediate and non-classical monocyte subsets, along with increased levels of the immune activation markers 
human leukocyte antigen-DR (HLA-DR), and adhesion molecules cluster of differentiation molecule 11b (CD11b) and 
L-selectin (CD62L). Furthermore, we observed increased C–C motif chemokine receptor 2 (CCR2) expression on clas-
sical monocytes and decreased C-X3-C motif chemokine receptor 1 (CX3CR1) expression on non-classical monocytes 
in older adult subjects. The expression of co-inhibitory receptors was reduced on monocyte subsets in older adults.

Conclusions:  Circulating monocytes in older adults exhibit increased expression of activation, adhesion, and migra-
tion markers, but decreased expression of co-inhibitory molecules.
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Background
With the increase in worldwide life expectancy, the per-
centage of older people in the general population has 
grown dramatically [1]. The immune system is one physi-
ological system undergoing dramatic changes during 
aging. Characteristic aging-associated changes have been 

described for various aspects of the immune system in 
terms of numbers, phenotypes, and functions [2].

As one of the central phenotypes associated with 
aging, chronic immune activation causes two distinct 
but closely interrelated aspects of aging: immunose-
nescence and inflammaging [3, 4]. Immunosenescence 
refers to the age-related decline in immune functions, 
such as thymic involution and dampened responses to 
infections or vaccinations [5]. Ultimately, immunosenes-
cence leads to a decreased capacity to combat infections 
and poor vaccine efficacy in the elderly [6]. In contrast, 
inflammaging displays a chronic, sterile, low-grade, 
and age-related inflammation accompanied by chronic 
activation of the immune system, and thus contributes 
to the pathogenesis of various age-related diseases [7]. 
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In addition, inflammaging may lead to an over-exuber-
ant immune response to viral infections, which further 
causes more severe tissue injury and enhances mortality 
in the elderly [8, 9].

An accumulation of certain cell populations with the 
characteristics of immunosenescence and inflammaging 
is a conserved hallmark of immune aging. For instance, 
the elderly have an age-related accumulation of PD-
1+TIGIT+CD8+ exhausted T cells [10] and granzyme 
K-expressing CD8+ T cell populations with an inflam-
maging phenotype [11]. Aged immune cells can also 
exhibit features of both immunosenescence and inflam-
maging. For example, CD8+ T cells from the elderly 
display an exhaustion phenotype (upregulation of co-
inhibitory receptors, impaired cytokine production, and 
high susceptibility to apoptosis) [12], as well as higher 
levels of intracellular Granzyme B and perforin [13].

Monocytes, the precursor of macrophages [14], play 
a crucial role in innate immune responses [15, 16]. Cir-
culating monocytes are heterogeneous [17] and consist 
of three subsets: CD14highCD16− classical monocytes, 
CD14highCD16+ intermediate monocytes, and 
CD14lowCD16+ non-classical monocytes [18–20]. Addi-
tionally, we reported a CD14+/lowCD16− monocyte sub-
set that represents immature monocytes newly released 
from the bone marrow [21]. Among these popula-
tions, CD14highCD16+ intermediate monocytes exhibit 
a high capacity for the production of tumor necrosis 
factor-α (TNF-α) and regulating immune responses 
[20] and closely correlate with many inflammatory dis-
eases. CD14lowCD16+ monocytes express higher levels 
of the C-X3-C motif chemokine receptor 1 (CX3CR1), 
patrol the vascular endothelium, and are involved in the 
immune surveillance of local tissues [22]. It has been 
widely accepted that monocytes are one of the central 
components of inflammaging [5]. Several recent stud-
ies have reported that elderly individuals have altered 
proportions of monocyte subsets [23] correlating with 
an increased incidence of chronic inflammatory dis-
eases [24–26]. In addition, although monocytes and 
macrophages from older individuals exhibit impaired 
phagocytosis capabilities, higher intracellular TNF-α 
[27] was detected at basal levels and upon stimulation 
with toll-like receptor (TLR) 4 or TLR1/2 agonists [28]. 
Cumulatively, these findings support the notion that 
monocyte populations may facilitate the inflammaging 
process.

Previous studies have revealed a crucial role of co-
inhibitory molecules in T cell aging [10–13]. Recently, 
co-inhibitory molecules have drawn considerable atten-
tion in the innate immune system. It has been shown that 
co-inhibitory molecules may suppress innate immune 
responses and promote immune tolerance [29, 30]. As 

one of the major compartments of the innate immune 
system, monocytes have been widely accepted as cen-
tral mediators of inflammaging [15]. However, pheno-
typic and functional alterations in monocyte subsets 
have not been comprehensively investigated. Specifi-
cally, it remains unclear whether aged monocytes have 
characteristics similar to aged T cells, such as increased 
expression of co-inhibitory molecules and hyperactiva-
tion phenotypes. Herein, we demonstrated that circulat-
ing monocytes in older adults exhibit increased markers 
of activation, adhesion, and migration, but decreased 
expression of co-inhibitory molecules.

Results
Increased TNF‑α and decreased IL‑6 production by aging 
monocytes
In the present study, 192 healthy adults (males: 75; 
females: 117) were recruited and subdivided into three 
groups: young (21–40  years old), middle-aged (41–
60 years old), and older adults (> 60 years old) (Table 1). 
A chi-squared test was performed and demonstrated that 
gender was balanced among all three groups (P = 0.6860).

Older adults exhibited a significant increase in the per-
centage of total monocytes in PBMCs and in the num-
ber of total monocytes in whole blood than adults in 
the young and middle-aged groups (Fig.  1A; Fig. S1B). 
At baseline (mock control), the percentages of TNF-
α+, IL-6+, interleukin-10 (IL-10)+, granulocyte–mac-
rophage colony-stimulating factor (GM-CSF)+, and 
interleukin-1β (IL-1β)+ monocytes were comparable 
among all three groups (Fig. S2A, S2B). In  vitro LPS-
stimulated total monocytes from elderly participants had 
a higher frequency of TNF-α+ cells and increased TNF-
α:expression based on median fluorescence intensity 
(MFI) (Fig.  1B; 1C; S3B) compared to middle-aged and 
young adults. Further, LPS-stimulated total monocytes 
in PBMCs from elderly participants had a lower percent-
age of IL-6+ monocytes and reduced IL-6 expression 
than those from middle-aged and young adults (Fig. 1B; 
1C; S3B). Lastly, the frequency and expression of IL-10, 

Table 1  Characteristics of adult study participants

Age was described by the median and interquartile range (IQR) and analyzed 
using the Kruskal–Wallis test

Parameters Total
(n = 192)

21–40
(n = 65)

41–60
(n = 49)

 > 60
(n = 78)

P
Value

Gender

  Male 75 33 17 25 0.6860

  Female 117 32 32 53

Age, years

  Median 51.5 33 49.5 73 0.0014

  IQR 36–69 28–36 43–55 65.5–78
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GM-CSF, and IL-1β: in total monocytes were comparable 
among all three age groups (Fig. 1B; S3A; S3B).

Increased intermediate and non‑classical monocyte 
subsets in older adults
According to previous studies, circulating mono-
cytes are schematically divided into four subsets: 
immature CD14lowCD16− phenotype (Mo0), classical 
CD14highCD16− (Mo1), intermediate CD14highCD16+ 
(Mo2), and non-classical CD14lowCD16+ (Mo3) sub-
sets (Fig.  2A; S1A). In our study, older adults exhibited 
decreased frequency of Mo1 monocytes and increased 
frequencies and numbers of Mo0, Mo2 and Mo3 mono-
cyte subsets compared to young and middle-aged adults 

(Fig. 2B; S1C). Cumulatively, these data indicated that a 
shift in monocyte subsets to intermediate and non-classi-
cal phenotypes occurred during the aging process.

Expression of activation, adhesion, and chemokine 
receptor markers on monocyte subsets
We next investigated the expression of activation mol-
ecules (HLA-DR and CD88), and adhesion molecules 
(CD29, CD11b, and CD62L) on different monocyte 
subsets (Table S1; Fig. S4A; S4B). Compared to young 
adults, elderly individuals displayed a marked increase 
in CD11b expression levels on all monocyte subsets 
(Fig.  3A; S5A). Similarly, the expression of HLA-DR 
on all monocyte subsets from elderly individuals was 

Fig. 1  The cytokine profiles of total monocytes in healthy adults in different age groups. A. Comparison of the percentage of total monocytes 
among peripheral blood mononuclear cells (PBMCs) in young, middle-aged, and older adults via flow cytometry (young: 21–40 years, n = 42; 
middle-aged: 41–60 years, n = 34; older: > 60 years, n = 34). Data are shown as a box plot with medians (lines inside boxes), 25th, and 75th quartiles 
(limits of boxes). Whiskers indicate the range, and each dot represents one sample. P-values were obtained using a Kruskal–Wallis test, followed 
by post hoc analysis. B. Representative flow cytometry data of intracellular staining for TNF-α, IL-6, IL-10, GM-CSF, and IL-1β in total monocytes 
stimulated with LPS (100 ng/mL) for 3 h in vitro from young, middle-aged, and older adults (young: 21–40 years, n = 42; middle-aged: 41–60 years, 
n = 34; older: > 60 years, n = 34). C. Intracellular staining for the percentage of TNF-α+ and IL-6+ monocytes stimulated with LPS (100 ng/mL) for 3 h 
in vitro from young, middle-aged, and older adults (young: 21–40 years, n = 42; middle-aged: 41–60 years, n = 34; older: > 60 years, n = 34) upon 
in vitro LPS stimulation. Data are shown as box-plots with medians (lines inside boxes), 25th, and 75th quartiles (limits of boxes). Whiskers indicate the 
range, and each dot represents one sample. P-values were obtained by a Kruskal–Wallis rank test, followed by post hoc analysis
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higher than that of monocytes from young and middle-
aged adults (Fig. 3A; S5A). Additionally, Mo1 and Mo0 
subsets from elderly adults expressed increased levels of 
CD62L (Fig.  3A; S5A) and increased CD29 expression 
levels on Mo0 monocytes compared with those from 
young adults (Fig. S5A; S5B). CD88 expression levels 
were comparable among monocyte subsets regardless 
of age (Fig. S5A; S5B). Further, a radar graph of young, 
middle-aged, and older adults identified significant dif-
ferences amongst normalized CD11b, CD62L, and 
HLA-DR levels on monocyte subsets from older adults 
(Fig. 3B). These data indicated that the expression levels 
of activation and adhesion molecules on monocytes are 
increased in older adults due to the aging process.

CCR2 and CX3CR1 are two key chemokine receptors 
important for monocyte migration (Table S1). In conform-
ity with previous studies [31], Mo0, Mo1, and Mo2 sub-
sets expressed high levels of CCR2 but intermediate levels 
of CX3CR1, while Mo3 subsets expressed high levels of 
CX3CR1 (Table S1; Fig. 4A). We found increased expres-
sion of CCR2 on Mo0 and Mo1 subsets (Fig. 4B; S6A; S6B) 
and reduced CX3CR1 expression on Mo1 and Mo3 sub-
sets from the elderly adult group (Fig. 4B; S6A; S6B).

Decreased expression of co‑inhibitory molecules 
on monocytes in the elderly
We have previously reported that the expression of T-cell 
immunoglobulin and immunoreceptor tyrosine-based 

inhibitory motif (ITIM) domain (TIGIT) is increased in 
aging T cells [10]; however, whether this is true in mono-
cyte subsets remains unknown. To test this, we measured 
co-inhibitory receptor expression on monocytes from all 
three age groups. We found that monocytes from young 
adults expressed 2B4 (CD244), T-cell immunoglobulin 
domain and mucin domain 3 (TIM-3), CD200R, TIGIT, 
and B and T lymphocyte attenuator (BTLA), while 
CD160, PD-1, and lymphocyte-activation gene 3 (LAG-
3) levels were rarely expressed (Table S1; Fig. 5A). In con-
trast, the percentages of monocytes expressing CD200R 
and TIGIT were reduced on all monocyte subsets in 
older adults compared to young and middle-aged adults 
(Fig. 5B). We also observed that the Mo0, Mo1, and Mo3 
subsets in elderly individuals expressed decreased levels 
of BTLA and TIM-3 (Fig. 5B).

Discussion
Several studies have investigated age-related alterations 
in monocyte subsets in older adults [32–37]. Consistent 
with previous studies [38, 39], we observed an increase 
in the percentages of intermediate monocyte subsets 
with greater TNF-α producing capacity in the elderly 
population, indicative of inflammaging. In addition, 
monocytes from older adults had increased expression 
levels of activation markers, along with reduced expres-
sion of co-inhibitory molecules compared to mono-
cytes from young and middle-aged adults.

Fig. 2  Percentage of peripheral monocyte subsets from young, middle-aged, and older adults. A. Ideograph and representative flow cytometry 
analyses of monocytes. According to the expression pattern of CD14 and CD16, human monocytes were divided into CD14lowCD16− (Mo0), 
CD14highCD16− (Mo1), CD14highCD16+ (Mo2), and CD14low CD16+ (Mo3) subsets. B. Comparison of the percentages of Mo0, Mo1, Mo2, and Mo3 
subpopulations among all monocytes in young, middle-aged, and older adults were performed according to the expression pattern of CD14 and 
CD16 (young: 21–40 years, n = 42; middle-aged: 41–60 years, n = 34; older: > 60 years, n = 34). P-values were calculated using the non-parametric 
Kruskal–Wallis rank test, followed by post hoc analysis
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Fig. 3  The expression levels of HLA-DR, CD88, CD29, CD11b, and CD62L in monocyte subsets. A. The MFI of HLA-DR, CD11b, and CD62L from 
monocyte subsets (Mo0, Mo1, Mo2, and Mo3) among young, middle-aged, and older persons (young: 21–40 years, n = 23; middle-aged: 
41–60 years, n = 15; older: > 60 years, n = 44). B. The Z-scores of HLA-DR, CD88, CD29, CD11b, and CD62L expression of monocyte subsets (Mo0, 
Mo1, Mo2, and Mo3) from young (black dots, n = 23), middle-aged (blue dots, n = 15) and older adults (red dots, n = 44) as a radar plot, and the 
values range from 0 to 1
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Previous studies have demonstrated that both HLA-
DR and co-inhibitory molecules regulate innate inflam-
matory responses in different manners [40–42]. Since 
HLA-DR crosslinking can generate intracellular signals 
to induce TNF-α release in monocytes, enhanced HLA-
DR expression is consistent with amplified inflammatory 
responses in aged monocytes [43]. In contrast, co-inhib-
itory molecules were originally recognized as an impor-
tant feature of exhausted T-cells in patients with chronic 

infection and cancer [10, 44]. Recent studies have dem-
onstrated the suppressive functions and effects of co-
inhibitory molecules on innate immune responses. For 
instance, the co-inhibitory molecule TIM-3 is expressed 
on monocytes, macrophages, dendritic cells (DCs), 
and natural killer (NK) cells [45], and impairs TNF-
α:production by negatively regulating the nuclear factor 
kappa B (NF-κB)/TNF-α pathway [46]. The low expres-
sion levels of CD200R, 2B4, and LAG-3 correlate with 

Fig. 4  The expression of CCR2 and CX3CR1 in monocyte subsets. A. The MFI of CCR2 and CX3CR1 from monocyte subsets in young participants 
was analyzed by flow cytometry. Histograms were created using FlowJo software. B. Boxplots showing the MFI of CCR2 and CX3CR1 from 
monocyte subsets in young, middle-aged, and older individuals (young: 21–40 years, n = 23; middle-aged: 41–60 years, n = 15; older: > 60 years, 
n = 44). P-values were calculated using the non-parametric Kruskal–Wallis rank test, followed by post hoc analysis

Fig. 5  Percentage of monocyte subsets expressing co-inhibitory molecules decreased in older adults. A. Representative flow cytometry 
histograms display the expression of the co-inhibitory molecules 2B4, T-cell immunoglobulin domain and mucin domain 3 (TIM-3), CD200R, 
T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), B and T lymphocyte attenuator (BTLA), CD160, 
programmed death-1 (PD-1), and lymphocyte-activation gene 3 (LAG-3) on monocyte subsets from young adults. B. The percentage of monocyte 
subsets expressing TIM-3, 2B4, CD200R, TIGIT, and BTLA from young, middle-aged, and older adults (young: 21–40 years, n = 42; middle-aged: 
41–60 years, n = 34; older: > 60 years, n = 34). P-values were calculated using the non-parametric Kruskal–Wallis rank test, followed by post hoc 
analysis

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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increased production of TNF-α and IL-6 by monocytes 
[47, 48]. Therefore, co-inhibitory molecules act as nega-
tive regulators for both the innate and adaptive immune 
systems. Of note, T-cells and monocytes display dis-
tinct alterations during the process of aging. Long-term 
exposure to a wide range of antigens results in increased 
expression of co-inhibitory molecules in T cells, along 
with an impaired capacity to produce pro-inflammatory 
cytokines [49]. In contrast, although acute infection up-
regulates the levels of co-inhibitory molecules via TLR 
signaling pathways in monocytes, we found that aged 
monocytes had a reduced expression of co-inhibitory 
molecules, and an increased capacity to produce TNF-
α. Further studies are required to explore the underlying 
mechanisms regulating the unique senescence and aging 
features of different immune cell types.

In addition to the intermediate subset, the percentage 
of the non-classical monocyte subset was also increased 
in the circulating monocyte pool during aging. Non-
classical monocytes are a typical population involved in 
innate immune surveillance and inflammatory responses 
in local tissues [50]. We found dysregulated expression 
of chemokine and adhesion molecules (CCR2, CX3CR1, 
CD11b, and CD62L) in the elderly population. Previ-
ous studies have shown the roles of these molecules in 
the regulation of monocyte recruitment to local tissues. 
CCR2 can enhance chemotactic motility and recruit-
ment of these cells to the vessel wall [], CD62L is involved 
in monocyte rolling and adhesion to endothelial cells 
[52], CD11b mediates the trans-endothelial migration 
of monocytes [5354], and CX3CR1 provides a survival 
signal and promotes the differentiation of non-classical 
monocytes into anti-inflammatory M2-like macrophages 
[22]. Notably, aberrant expression of these molecules 
can occur in other monocyte subsets beyond non-clas-
sical monocytes []. Immature Mo0 and Mo1 subsets are 
more susceptible to dysregulated molecules expression, 
indicating that immature populations may contribute to 
local inflammatory responses in age-associated diseases. 
This notion is consistent with our previous study, which 
demonstrated that immature CD14lowCD16− monocytes 
can migrate to the lungs, differentiate into mature TNF-
α-producing monocytes, and contribute to acute lung 
injury induced by cardiopulmonary bypass [21].

Previous studies have reported elevated plasma levels 
of IL-6 in the elderly [55]. However, we found a decreased 
capacity for IL-6 production in response to LPS stimula-
tion in total monocytes from elderly patients. It is pos-
sible that other cell types may also be a source of IL-6 
in elderly individuals. This is supported by previous 
studies that found the elderly had lower percentages of 
CD14highCD16−monocytes, which have a higher capacity 

for IL-6 production in response to pathogens than other 
monocyte subsets [56, 57].

One limitation of our study is that we did not investi-
gate the cytokine responses of each monocyte subset, 
due to rapid monocyte differentiation and unstable CD16 
and CD14 expression of isolated cells in vitro [58]. Future 
clinical studies are required to confirm the correlation 
between the parameters and characteristics of monocyte 
aging and the progression of chronic age-related diseases.

Conclusions
In summary, we discovered a series of alterations in the 
monocyte subset from elderly adults including the fol-
lowing: 1) increased intermediate and non-classical 
monocyte subsets, along with decreased classical subsets; 
2) increased expression of immune activation markers, 
such as HLA-DR, CD11b, and CD62L by monocyte sub-
sets; 3) increased CCR2 expression on classical mono-
cytes and decreased CX3CR1 expression on non-classical 
monocytes; and 4) decreased percentage of monocytes 
expressing the co-inhibitory receptors 2B4, TIM-3, 
CD200R, TIGIT, and BTLA (Fig.  6). Further mechanis-
tic insights and research are needed to provide a better 
understanding of the immune dysfunction occurring 
during age-related diseases, and to accelerate the devel-
opment of therapeutic regimens for aging-associated 
inflammatory responses.

Materials and methods
Study subjects
A total of 192 healthy volunteers aged 24–90  years (75 
males and 117 females) were recruited from September 
to October 2018. All human blood samples were col-
lected after written informed consent had been obtained. 
The subjects who tested positive for human immunode-
ficiency virus (HIV) infection, hepatitis viral infections, 
systemic infection, connective tissue disease, cancer, or 
abnormal tumor markers—including alpha-fetoprotein 
(AFP), carcinoembryonic antigen (CEA), carbohydrate 
antigen (CA-199), CA-153, and CA-125—were excluded 
from our study. This study was approved by the com-
mittee of ethics at Beijing Ditan Hospital, Capital Medi-
cal University, Beijing, China. Similar to our previous 
studies [10, 44], the healthy adults were subdivided into 
three groups: young (21–40 years old), middle-aged (41–
60 years old), and older adults (> 60 years old).

Isolation of peripheral blood mononuclear cells (PBMCs)
Whole blood was collected in Vacutainer tubes with 
EDTA-K2 and processed immediately for PBMCs iso-
lation. Blood was diluted 1:1 with phosphate-buffered 
saline (PBS), layered onto Ficoll-Paque (GE Healthcare, 
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Marlborough, MA, USA), and processed according to the 
manufacturer’s instructions.

Immunofluorescence staining and flow cytometric analysis
All experiments and assays were performed on freshly 
isolated samples. Isolated PBMCs were incubated with 
directly conjugated fluorescent antibodies for 30  min 
at 4  °C. The cells were washed before flow cytometry 
analysis. Monocytes were separated from other cells by 
gating on CD3/15/19− cells combined with forward scat-
ter (FSC)/ side scatter (SSC) characteristics and CD45 
expression. The gating strategy used is shown in Fig. S1. 
Antibodies used included anti-human CD160-Alexa 
Fluor 488, CD4-APC-Fire750, CD8-BV510, HLA-DR-
Alexa Fluor 700, CD14-APC, PD-1-PE, 2B4-PE-CF594, 
CD16-BV711, TIM-3-BV650, CD200R-PE, BTLA-
BV650, CD45-BV786 (BD Biosciences, San Diego, CA, 
USA), CX3CR1-BV421, CD3-PerCP-Cy5.5, CD15-
PerCP-Cy5.5, CD19-PerCP-Cy5.5, CD29-Alexa Fluor 

488, CD62L-BV650, CD11b-BV605, CCR2-PE (BioLe-
gend, San Diego, CA, USA), TIGIT-PE-Cy7, and LAG-
3-APC (eBioscience, San Diego, CA, USA), along with 
the corresponding isotype controls. BD Trucount Tubes 
(BD Biosciences), combined with specific antibodies 
(CD45/3/4/8 cocktail; BD Biosciences), were used to 
determine the absolute counts of leukocytes in the blood 
with flow cytometry according to the manufacturer’s 
instructions. The absolute numbers (cells per microliter) 
of leukocytes and T cells were determined by comparing 
cellular and bead events.

In vitro stimulation and intracellular staining
PBMCs were cultured in RPMI-1640 media (GIBCO, 
Grand Island, NY, USA) containing 10% fetal bovine 
serum (FBS), with or without LPS (100  ng/mL, STEM-
CELL Technologies, Vancouver, Canada) and Golgiplug 
(BD Biosciences, San Diego, CA, USA) for 3 h. The cells 
were surface-stained with CD45-BV786, CD14-Alexa 
Fluor 700, CD16-BV711, HLA-DR-APC-H7, TIM-
3-BB515 (BD Biosciences, San Diego, CA, USA), and 
TIGIT-PE-Cy7 (eBioscience, San Diego, CA, USA), and 
intracellularly stained with antibodies against IL-10-APC, 
IL-1β-Pacific blue, TNF-α-BV650 (BD Biosciences), IL-
6-PE (eBioscience), GM-CSF-PE-CF594 (BioLegend), 
and the corresponding isotype controls. Data acquisi-
tion was performed on an LSR Fortessa flow cytometer 
(BD Biosciences, San Diego, CA, USA), and data were 
analyzed with FlowJo software (Tree Star, Ashland, OR, 
USA).

Statistical analysis
Data are expressed as the mean ± standard deviation 
(SD). GraphPad Prism 7 (GraphPad Software, La Jolla, 
CA, USA), SPSS (IBM Corporation, New York, NY, USA), 
and the R program (https://​cran.r-​proje​ct.​org/) were 
used for statistical calculations. The normality of each 
variable was evaluated using the Kolmogorov–Smirnov 
test. For comparing two or more independent samples, a 
Kruskal–Wallis test followed by Dunn’s multiple compar-
isons test was used. Participant characteristics were com-
pared using the Kruskal–Wallis ANOVA test (continuous 
variables), followed by post hoc Bonferroni analyses. If 
the data were not symmetric, the Greenhouse–Geisser 
correction was used. For all analyses, P-values < 0.05 were 
considered statistically significant.

Abbreviations
PBMCs: Peripheral blood mononuclear cells; TNF-α: Tumor necrosis factor-α; 
IL-10: Interleukin-10; GM-CSF: Granulocyte-macrophage colony-stimulating 
factor; IL-1β: Interleukin-1β; HLA-DR: Human leukocyte antigen-DR; CD11b: 
Adhesion molecule cluster of differentiation molecule 11b; CD62L: L-selectin; 
CX3CR1: C-X-C chemokine receptor; PD-1: Programmed death-1; TIM-3:  T-cell 
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