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Abstract 

Background Obesity rates are increasing worldwide. Obesity leads to many complications, including predisposing 
individuals to the development of cognitive impairment as they age. Immune dysregulation, including inflammaging 
(e.g., increased circulating cytokines) and immunosenescence (declining immune system function), commonly occur 
in obesity and aging and may impact cognitive impairment. As such, immune system changes across the lifespan 
may impact the effects of obesity on neuroinflammation and associated cognitive impairment. However, the role 
of age in obesity‑induced neuroinflammation and cognitive impairment is unclear. To further define this putative 
relationship, the current study examined metabolic and inflammatory profiles, along with cognitive changes using 
a high‑fat diet (HFD) mouse model of obesity.

Results First, HFD promoted age‑related changes in hippocampal gene expression. Given this early HFD‑
induced aging phenotype, we fed HFD to young adult and middle‑aged mice to determine the effect of age 
on inflammatory responses, metabolic profile, and cognitive function. As anticipated, HFD caused a dysmetabolic 
phenotype in both age groups. However, older age exacerbated HFD cognitive and neuroinflammatory changes, 
with a bi‑directional regulation of hippocampal inflammatory gene expression.

Conclusions Collectively, these data indicate that HFD promotes an early aging phenotype in the brain, which 
is suggestive of inflammaging and immunosenescence. Furthermore, age significantly compounded the impact 
of HFD on cognitive outcomes and on the regulation of neuroinflammatory programs in the brain.

Keywords Aging, Cognitive impairment, High‑fat diet, Obesity, Mouse, Inflammation, Brain, RNA‑seq

†Rosemary E. Henn and Sarah E. Elzinga contributed equally to this work.

*Correspondence:
Eva L. Feldman
efeldman@umich.edu
1 Department of Neurology, University of Michigan, Ann Arbor, MI 48109, 
USA
2 NeuroNetwork for Emerging Therapies, University of Michigan, Ann 
Arbor, MI 48109, USA
3 Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 
48109, USA
4 Department of Molecular and Integrative Physiology, Division 
of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, 
USA

5 Department of Biomedical Sciences, University of North Dakota, Grand 
Forks, ND 58202, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12979-022-00323-7&domain=pdf


Page 2 of 16Henn et al. Immunity & Ageing  (2022) 19:67

Background
The obesity crisis is reaching pandemic levels [1]. 
According to the World Health Organization, in 2016 
over 109 billion adults worldwide were overweight or 
obese. Not only does obesity significantly impact quality 
of life [2–4], but it also promotes a multitude of systemic 
complications. Obesity leads to comorbidities including 
type 2 diabetes, cardiovascular disease, cancer, stroke, 
and cognitive impairment [1, 5–7]. Further, obesity is a 
known risk factor for aging associated dementias, includ-
ing Alzheimer’s disease and Alzheimer’s disease related 
dementias. Studies demonstrate that mid-life obesity in 
particular is a risk factor for developing dementia later 
in life [5, 8]. However, obesity can occur throughout the 
lifespan, and its effects on cognition during adolescence 
and throughout adulthood are unclear. The impact of age 
on obesity-induced cognitive impairment requires bet-
ter clarification. Further, the mechanistic link between 
obesity and cognitive impairment remains poorly 
characterized.

Immune dysregulation is a hallmark of both obesity 
[9] and Alzheimer’s disease [10], and contributes to obe-
sity induced cognitive impairment [11, 12]. Obesity is 
associated with systemic [13] and central nervous sys-
tem (CNS) inflammation, including in the hippocam-
pus [11, 12, 14], a brain region responsible for learning 
and memory tasks affected by Alzheimer’s disease [15]. 
While it is evident that immune responses contribute to 
obesity-induced cognitive impairment, differential effects 
of age on this interaction are unclear. The immune sys-
tem is profoundly impacted by aging, and effects of aging 
on both innate and adaptive immune function have been 
extensively studied [16–18]. The aging immune sys-
tem has reduced ability to effectively mount responses 
to challenges, a phenomenon termed ‘immunosenes-
cence’ [18]. Yet, the innate arm of the immune system 
becomes aberrantly overactive, leading to chronic low 
level systemic inflammation, termed ‘inflammaging’ [16, 
17, 19]. Due to these age-dependent changes in immune 
responses, age likely impacts the role of inflammation in 
obesity-induced cognitive impairment.

Adolescent and adult murine models of diet-induced 
obesity demonstrate cognitive impairment [12, 20, 
21], including increased anxiety-like behavior [22, 23]. 
Equivalent studies in aged mice are lacking; some evi-
dence suggests that obesity worsens age-related cognitive 
decline [24], while other studies show that consuming a 
high-fat diet (HFD) does not affect baseline aging deficits 
[23]. However, it is established that HFD promotes the 
aging process in the CNS. Not only does HFD accelerate 
Alzheimer’s disease pathology and associated cognitive 
impairment [25–27], but it also exacerbates neuroinflam-
mation and microglial aging in the healthy brain [28, 29]. 

Given this effect of HFD on CNS age-related inflamma-
tion, alongside the established role of the immune sys-
tem in obesity-induced cognitive impairment, this study 
investigated potential differential effects of age on hip-
pocampal neuroinflammation and cognitive function in 
obesity.

Herein, we initially employed our established model 
of HFD-induced obesity throughout adolescence and 
into adulthood to determine the effect of obesity on 
hippocampal transcriptomics. We found that obesity 
during earlier periods of the lifespan induced an ‘early-
aging’ hippocampal phenotype. Therefore, we then used 
this same model in young adult and middle-aged mice 
to determine the impact of HFD and age on obesity-
induced neuroinflammation and cognitive impairment. 
We found that age exacerbated HFD effects on a limited 
number of metabolic parameters. However, age signifi-
cantly impacted the effect of HFD on fear conditioning 
cognitive performance. Further, age differentially affected 
hippocampal inflammatory gene expression, indicat-
ing that age plays an important role in the regulation of 
inflammatory responses in obesity.

Results
Obesity promotes a premature aging transcriptomic 
signature in the hippocampus
First, our established mouse model of diet-induced 
obesity and cognitive decline [20, 30, 31] was used 
to determine the effect of chronic obesity on the 
hippocampal transcriptome in adolescent mice maturing 
into young adulthood. Hippocampi from a previously 
published study [31] using C57BL/6 mice (n = 8–9 per 
group) fed HFD (high fat diet) or SD (standard diet) 
from 5 weeks (wk) of age until either 16 or 24 wk of age 
(Fig. 1A; cohort 1) were processed for RNA-sequencing 
(RNA-seq). Hippocampal gene expression analysis 
identified 886 differentially expressed genes (DEGs; 
adjusted P-value < 0.05) between HFD and SD at 16 
wk age, and 111 genes between HFD and SD at 24 wk 
(Additional Table 1). Interestingly, HFD mice had similar 
gene expression at both ages, indicating that HFD-related 
changes likely occur early and are persistent. Next, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis was performed to infer potential 
biological significance of the DEGs. The identified 
DEGs between HFD and SD in 16 wk young adult mice 
were enriched in pathways related to metabolism (e.g., 
‘oxidative phosphorylation,’ ‘non-alcoholic fatty liver 
disease’) and neurodegenerative disease (e.g., ‘Parkinson 
disease,’ ‘Alzheimer disease’) (Fig.  1B, top 10 pathways; 
Additional Table 1).

There was also an effect of age alone on the 
hippocampal transcriptome. In SD mice, age (24 wk 
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Fig. 1 Obesity promotes a premature aging transcriptomic signature in the hippocampus. (A) Study paradigm for cohort 1: mice aged 5 
wk were fed high‑fat diet (HFD) or standard diet (SD) for 11 wk (final age 16 wk) or 19 wk (final age 24 wk) and hippocampi were analyzed 
by RNA‑sequencing. (B) Bar plot of KEGG enrichment analysis of differentially expressed genes (DEGs) in HFD 16 wk versus SD 16 wk. (C) Bar plot 
of KEGG enrichment analysis of DEGs in SD 24 wk versus SD 16 wk DEGs. (D) Venn diagram of overlapping DEGs (adjusted P‑value < 0.05; grey) 
in HFD 16 wk versus SD 16 wk comparison (yellow) with SD 24 wk versus SD 16 wk comparison (light blue). (E) Bar plot of KEGG enrichment analysis 
of the 273 overlapping DEGs from (D). For (B), (C), and (E), bar color represents ‑log10(Padj), number to the right of the bar represents number 
of DEGs in the KEGG pathway, and bar length along the x‑axis, ‘% in genome,’ represents the fraction of DEGs relative to all KEGG pathway genes
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versus 16 wk) affected 729 genes. KEGG pathway 
analysis of age-related DEGs identified enrichment of 
pathways related to metabolic dysfunction (e.g., ‘oxidative 
phosphorylation,’ and ‘diabetic cardiomyopathy’) and 
neurodegenerative disease (e.g., ‘Parkinson disease’ 
and ‘Huntington disease’) (Fig.  1C, top 10 enriched 
pathways; Additional Table  1). Because the KEGG 
pathways identified for HFD versus SD DEGs at 16 wk 
mirrored those for the age associated DEG set in young 
versus mature adult SD mice, the impact of HFD on age 
related gene expression was assessed. Indeed, 273 genes 
overlapped between the 16 wk HFD versus SD DEGs 
and the SD 24 versus 16 wk DEGs (Fig.  1D). KEGG 
pathway analysis for these 273 genes revealed enrichment 
similar to the diet- and age-dependent DEGs, including 
‘ribosome,’ ‘oxidative phosphorylation,’ and ‘Parkinson 
disease’ (Fig.  1E, top ten enriched pathways; Additional 
Table 1).

HFD induces obesity and metabolic dysfunction in adult 
and aged mice
Since obesity induced this premature aging hippocampal 
phenotype, we next investigated diet-induced obesity in 
young adult (termed ‘adult’) and middle-aged (termed 
‘aged) mice to determine the effect of age on obesity-
induced neuroinflammation and cognitive impairment. 
Adult and aged mice were fed HFD or SD for 14 wk 
(Cohort 2; Fig.  2A). HFD mice had significantly higher 
terminal body weights than their SD counterparts, 
regardless of age (adult HFD versus adult SD and aged 
HFD versus aged SD; P < 0.0001, one-way ANOVA) 
(Fig. 2B). Further, older age was associated with increased 
body weight, regardless of diet (adult SD versus aged SD, 
P < 0.001; adult HFD versus aged HFD, P < 0.0001). Next, 
we measured terminal body composition, as percent lean 
and percent fat mass. Relative to their SD counterparts, 
both adult and aged HFD mice had lower percentage of 
lean body mass (adult HFD versus adult SD, P < 0.0001; 
aged HFD versus aged SD, P = 0.006, one-way ANOVA) 
and a higher percentage of fat mass (adult HFD 
versus adult SD, P < 0.0001; aged HFD versus aged SD, 
P < 0.0001) (Fig. 2C). Further, aged SD mice had a higher 
percentage body fat than adult SD mice (P = 0.0001), 
but there was no difference in percent fat between the 
adult and aged HFD groups. Terminal glucose tolerance 
tests were then performed to determine the effect of 

HFD on glucose homeostasis in adult and aged mice 
(Fig.  2D). Both adult and aged HFD mice showed an 
impaired response to glucose challenge compared to SD 
counterparts, demonstrated by higher peak blood glucose 
levels at 15  min post glucose bolus and increased area 
under the curve (AUC). Older age was associated with a 
worse response to glucose challenge in both SD and HFD 
animals (AUC, adult SD versus aged SD, P < 0.0001; adult 
HFD versus aged HFD, P < 0.0001, one-way ANOVA).

Next, to further define the differential effect of obesity 
on the metabolic health of adult versus aged mice, we 
quantified plasma fasting insulin levels, as well as termi-
nal epididymal adipocyte hypertrophy (Additional Fig. 1) 
and hepatic pathology (Additional Fig.  2) to assess the 
effect in multiple organs. HFD reduced the proportion of 
small adipocytes in both adult and aged mice (Additional 
Fig.  1A). Age also affected the distribution of adipocyte 
size in controls, with a lower proportion of small adipo-
cytes in aged SD mice versus adult SD animals. However, 
older age did not compound the effects of HFD on adipo-
cyte hypertrophy, suggesting a potential obesity ‘ceiling 
effect’ in response to HFD. HFD elevated plasma insulin 
concentrations in adults (P = 0.0007, Kruskal–Wallis), but 
in HFD aged mice the increase relative to SD mice did 
not reach statistical significance (P = 0.296) (Additional 
Fig.  1B). Kleiner scoring (32–34) for non-alcoholic fatty 
liver disease (NAFLD) pathology demonstrated that HFD 
increased steatosis in both adult (P = 0.0004, Kruskal–
Wallis) and aged (P = 0.039) mice, but corresponding 
increases in lobular inflammation did not reach statistical 
significance (Additional Fig.  2B,C). Further, the NAFLD 
activity score, a summation of steatosis, lobular inflam-
mation, and ballooning degeneration, was higher in HFD 
relative to SD in both adult (P = 0.0051, Kruskal–Wallis) 
and aged (P = 0.0197) mice (Additional Fig. 2D). In addi-
tion to Kleiner scoring, macrosteatosis was quantified 
by droplet counts, demonstrating that HFD increased 
counts in both adult (P = 0.0021, Kruskal–Wallis) and 
aged (P = 0.042) mice (Additional Fig. 2E).

HFD increases plasma but not hippocampal inflammatory 
cytokines
To examine possible differences in inflammatory 
cytokine and chemokine production due to HFD in 
adult and aged mice, plasma and hippocampi were 
assessed via ELISA (Fig.  3; cohort 2). In plasma, there 

Fig. 2 HFD induces obesity and metabolic dysfunction in adult and aged mice. (A) Study design for cohort 2: mice aged 5 wk and 1 yr were 
fed high‑fat diet (HFD) or standard diet (SD) for 14 wk; SD adult in teal, HFD adult in red, SD aged in blue, and HFD aged in orange. (B) Terminal 
body weights at study endpoint, ***P < 0.001, ****P < 0.0001 by one‑way ANOVA. (C) Terminal body composition by percent lean and fat mass, 
**P < 0.01, ***P < 0.001, ****P < 0.0001 by Kruskal–Wallis for non‑normally distributed lean mass and by one‑way ANOVA for fat mass. (D) Terminal 
glucose tolerance test, P < 0.05 by two‑way ANOVA (*, #, $, ^; shown in legend); area under the curve for each experimental group, ****P < 0.0001 
by one‑way ANOVA. n = 10 per group for all measures. Data are presented as mean ± standard deviation

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Fig. 3 Terminal plasma and hippocampal cytokines. Cohort 2 plasma and hippocampal cytokine protein concentrations via enzyme‑linked 
immunosorbent assay (ELISA) for plasma (A) TNF‑α and (B) MCP‑1, and hippocampal (C) TNF‑α, (D) MCP‑1, (E) IL‑6, (F) IL‑1β, (G) IFN‑γ, and (H) IL‑10; 
n = 7–9 per group. For all bar plots, adult SD (teal), adult HFD (red), aged SD (blue), aged HFD (orange); *P < 0.05 by one‑way ANOVA; error bars 
represent mean ± standard deviation
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were elevated concentrations of the pro-inflammatory 
chemokine monocyte chemoattractant protein-1 (MCP-
1) in aged HFD mice relative to aged SD animals (Fig. 3B; 
P = 0.0235, one-way ANOVA). Adult HFD and adult SD 
mice had similar plasma MCP-1 levels. Tumor necrosis 
factor alpha (TNF-α) plasma concentrations tended to 
be higher in HFD mice of both ages, although this did 
not reach statistical significance (Fig.  3A). There were 
no differences in any of the measured hippocampal 
cytokines across the groups (Fig. 3C-H).

HFD increases hippocampal microglial numbers
To better understand pro-inflammatory changes due to 
HFD and age, we next measured changes in microglial 
numbers in the hilus (Cohort 3; Additional Fig.  3). We 
observed that adult HFD mice had increased microglial 
numbers in this region of the hippocampus compared to 
adult SD mice (Additional Fig. 3A). Age alone appeared 
to also increase microglial numbers; however this was 
non-significant. There was also a nominal increase in 
microglial numbers in aged HFD vs aged SD animals. 
Interestingly, this increase in microglial numbers had a 
moderate positive correlation with body weight, where 
increasing body weights were associated with increased 
hilus microglial numbers (Additional Fig. 3B).

HFD alters fear responses, particularly in aged mice
To assess the impact of HFD and aging on cognition, 
associative learning was evaluated using a Pavlovian 
fear conditioning paradigm (Fig.  4; cohort 2). After a 
baseline period and three tone-shock pairings in the 
conditioning chambers on day 1, mice were returned 
to the same chambers on day 2. Freezing was then 
measured as an index of associative memory between 
the chamber and the aversive foot shock. During the first 
5 min in the training context on day 2, all mice exhibited 
robust freezing (Fig. 4B; P < 0.0001, 3-way RM ANOVA). 
However, HFD mice froze more than SD mice, regardless 
of age (P = 0.0001, 3-way RM ANOVA). When placed 
in a novel context and exposed to the same tone used 
during training but in the absence of a foot-shock on 
day 5, all mice froze significantly more when compared 
to freezing during the pre-tone baseline period (Fig. 4C; 
P < 0.0001, 3-way RM ANOVA). Additionally, a main 
effect of diet was observed, where HFD mice froze more 
compared to SD mice (P = 0.0054, 3-way RM ANOVA). 
When analyzing tone data, there was a compounding 
effect of age on diet, where aged HFD mice froze more 
compared to aged SD mice (P = 0.0141, 1-way ANOVA). 
On days 2 through 4 when mice were returned to the 
original training context for 30  min/day (Fig.  4D), HFD 
mice initially displayed higher levels of freezing (Bin 1 in 
Fig.  4D is the Day 2 data presented in Fig.  4B). During 

the 30 min of extinction training on day 2, a main effect 
of extinction training was observed (P < 0.0001, 3-way 
RM ANOVA). There were also main effects of both 
diet and age on extinction freezing, where HFD mice 
froze more compared to SD mice and aged mice froze 
more compared to adults (Fig.  4D; P values dependent 
upon day and Bin and are detailed in figure legend). 
Furthermore, aged HFD mice froze more than all other 
groups, particularly for the final bin of each day (Day 2, 
P < 0.0001; Day 3, P = 0.0005; Day 4, P = 0.0032; 1-way 
ANOVA).

Age determines hippocampal transcriptomic inflammatory 
response to HFD
Hippocampal inflammatory gene expression profiling 
by NanoString nCounter assay revealed a differential 
effect of diet dependent upon age (Fig.  5; cohort 2). A 
pattern of relative gene expression emerged for many 
of the DEGs due to age and diet (n = 32 DEGs, P < 0.05), 
with increased expression in HFD adults versus SD 
adults, but decreased expression in aged HFD mice 
relative to age-matched SD controls. Specifically, HFD 
in adult animals frequently increased expression of 
inflammatory genes with a significant increase in 18% 
of DEGs. Age increased gene expression even further, 
with aged SD animals exhibiting significantly higher 
expression in 60% of inflammatory DEGs. However, HFD 
in aged animals decreased the mean expression of many 
of these same genes, with significant decrease in 60% of 
DEGs. These results indicate bi-directional effects from 
HFD; HFD increased expression of inflammatory genes 
in adults but decreased expression in aged mice relative 
to age-matched SD controls. Of these genes, many were 
related to either lymphocyte differentiation or function 
(Additional Table  2). Additionally, a large proportion 
were also involved in chemotaxis or inflammation, and 
innate immune cell activation or pattern recognition. 
Genes of interest within these broad functions included 
C-X-C motif chemokine 11 (CxCl11), zinc finger E-box-
binding homeobox  1 (Zeb1), and interferon regulatory 
factor-4 (Irf4).  Altogether, these data indicate that 
HFD impacts expression of genes involved in immune 
cell recruitment, activation, and function, in an age-
dependent manner.

Discussion
Immune dysregulation is a common feature in obesity 
and aging, which is thought to contribute to pathological 
changes in the CNS, including cognitive impairment. 
Here, in a mouse model of obesity and cognitive 
impairment [20, 30], HFD promoted a premature 
aging signature in the young adult hippocampus. This 



Page 8 of 16Henn et al. Immunity & Ageing  (2022) 19:67

premature aging signature prompted us to examine 
differential effects of HFD with age. Age exacerbated 
effects of HFD on cognition, as measured by fear 

conditioning. Age also worsened HFD effects on body 
weight and glucose tolerance. However, most metabolic 
phenotyping parameters (body composition, plasma 

Fig. 4 HFD increases fear responses, particularly in aged mice. Aged HFD mice exhibit deficits in extinction learning (n = 10/group). (A) Fear 
conditioning paradigm. (B) Context test. Compared to baseline all mice displayed significant levels of freezing when returned to the training 
context on day 2 (3‑way RM ANOVA; main effect of training F (1, 36) = 315.7; ₸, p < 0.0001). Freezing levels appeared to be modulated by diet (3‑way 
RM ANOVA; main effect of diet F (1, 36) = 18.8; ‡, p < 0.0001) which was driven by the segregation of the two diet groups regardless of age at 24 h 
(1‑way ANOVA F (3, 36) = 6.096, p = 0.0018). (C) Tone test. Mice were placed in a novel context and after a 180 s baseline period were exposed 
to the same tone used during training (the last 30 s of baseline and first 30 s of tone are presented. A 3‑way repeated measures ANOVA revealed 
a main effect of training (F (1, 36) = 147.5 ₸, p < 0.0001). Freezing levels appeared to be modulated by diet (3‑way RM ANOVA; main effect of diet F (1, 
36) = 18.8; ‡, p < 0.0054) but this effect was not specific to group, although when freezing in response to tone was analyzed, there was a significant 
difference between mice in the Aged SD group and the Aged HFD group (1‑way ANOVA F (3, 36) = 3.593,P = 0.0228 followed by Tukey post hoc 
comparison: adjusted p = 0.0141). (D) Extinction training. On days 2, 3 and 4 mice were returned to the original training context and freezing 
was measured for 30 min (presented here in 5 min bins). Across all three days there was a reduction in freezing in response to repeated context 
exposure (3‑way RM ANOVA main effect of training: Day 2 F (1, 36) = 157.2, ₸, p < 0.0001; Day 3: F (1, 36) = 14.17; ₸, p = 0.0006; Day 4 F (1, 36) = 11.84; 
₸, p = 0.0015) which was likely influenced by diet (3‑way RM ANOVA main effect of diet: Day 2 F (1, 36) = 22.46, ₸, p < 0.0001; Day 3: F (1, 36) = 14.02; 
₸, p = 0.0006; Day 4 F (1, 36) = 10.63; ₸, p = 0.0024) and age (3‑way RM ANOVA main effect of age: Day 2 F (1, 36) = 4.963, ₸, p = 0.0322; Day 3: F 
(1, 36) = 6.750; ₸, p = 0.0135; Day 4 F (1, 36) = 16.03; ₸, p = 0.0003). This was especially evident on Day 2 where a training x diet x age interaction 
was observed (F (1, 36) = 4.963p = 0.0322). To more directly examine the effectiveness of extinction training a 1‑way ANOVA was used to analyze 
freezing levels recorded in the final bin on each day. Across all three days there was a main effect of group (Day 2: F (3, 36) = 12.69, p < 0.0001; Day 3: 
F (3, 36) = 7.524, p = 0.0005; Day 4: F (3, 36) = 5.530 P = 0.0032). This effect appears to be a function of mice in the Aged HFD group which exhibited 
significantly more freezing as compared to the other 3 groups (Tukey’s multiple comparisons test *** p < 0.001, * p < 0.05). All data are presented 
as mean ± SEM
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insulin, adipocyte hypertrophy, NAFLD liver pathology) 
appeared to reach a ‘ceiling’ where HFD produced similar 
effects in both adult and aged mice. Additionally, HFD 
induced bi-directional hippocampal inflammatory gene 
expression changes: increased expression in adults 
but decreased expression in aged animals. Genes with 
this bi-directional regulation were broadly related to 
lymphocyte differentiation or function, chemotaxis or 

inflammation, and innate immune cell activation or 
pattern recognition. Overall, our data indicate that age 
plays an important role in obesity-induced hippocampal 
inflammatory response and cognitive impairment.

Here, HFD promoted a premature hippocampal aging 
phenotype. Many DEGs in the hippocampus of 16 wk 
old HFD versus SD 16 mice were also DEGs arising 
from aging in controls (SD mice, 24 wk vs 16 wk of 

Fig. 5 Age determines hippocampal transcriptomic response to obesity. Heat map of hippocampal gene expression counts measured 
by NanoString nCounter for differentially expressed genes (diet*age interaction by mixed‑effects model, P‑value < 0.05); adult standard diet (SD; 
teal, first column), adult high‑fat diet (HFD; red, second column), aged SD (blue, third column), and aged HFD (orange, fourth column). Genes (rows) 
were hierarchically clustered, while columns include animals ordered by replicate number (n = 7–8 per group). Color represents relative expression 
levels of normalized counts for each gene across all samples from low expression (blue) to high expression (red)
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age). These overlapping genes were highly enriched in 
pathways related to metabolism, ribosome, oxidative 
phosphorylation, and neurodegenerative diseases, 
including Alzheimer’s Disease. In the brain, in addition 
to neurodegenerative disease and metabolic pathways, 
ribosome and oxidative phosphorylation pathways 
are considered to be aging signatures in multiple cell 
types [32]. Our findings align with existing evidence 
demonstrating that many of the consequences of 
aging, i.e. inflammaging, cellular senescence, telomere 
shortening, and genomic damage are also implicated in 
obesity and metabolic dysfunction [19, 33]. Others have 
similarly shown obesity induces an aging phenotype 
[34], particularly in adipose tissue [35]. This perhaps 
unsurprising as immune function and metabolism, both 
classically dysregulated during aging, are intrinsically 
linked. For example, saturated fatty acids activate pattern 
recognition receptors, such as toll-like receptors [36, 
37], creating a pro-inflammatory state. In turn, this pro-
inflammatory state directly impacts insulin signaling, 
promoting insulin resistance [37, 38].

Regardless of age, HFD mice had greater fat mass and 
lower lean mass versus SD controls. HFD mice also had 
fewer small adipocytes, increased liver steatosis, mac-
rosteatosis, and NAFLD score. Although not significant, 
aged HFD mice also had higher plasma insulin concen-
trations. These results are expected, since we [20, 30, 31] 
and others [39, 40] have shown HFD consistently causes 
obesity, dysregulated glucose metabolism, liver pathol-
ogy, and adipocyte hypertrophy. Interestingly, for weight 
and glucose tolerance, age compounded dietary effects; 
HFD and age worsened the metabolic phenotype relative 
to adult controls, where HFD aged mice displayed the 
most severe phenotype. However, for all other param-
eters, aged and adult HFD mice had a similar metabolic 
phenotype, possibly due to a ‘ceiling effect’ reaching a 
plateau with HFD, which older age could not worsen past 
a certain point.

Maintaining proper metabolic support in the CNS, 
including via neuron/glia metabolic crosstalk, is criti-
cal for normal cognitive function [41, 42]. We and oth-
ers have shown that obesity and metabolic dysfunction 
cause CNS metabolic changes, including CNS insulin 
resistance [20, 43] and hypoglycemia [44, 45]. Further-
more, systemic metabolic changes can indirectly impact 
the CNS via blood brain barrier disruption [46, 47]. This 
disruption allows for increased entry of peripheral fac-
tors, such as inflammatory mediators, into the brain [46] 
and further contributes to neurodegeneration and cog-
nitive impairment. Indeed, chronic HFD impairs cogni-
tion in mice [20, 40]. In this model we have previously 
shown that HFD feeding impairs hippocampal depend-
ent memory tasks in the form of novel object recognition 

testing and Morris water maze [20]. To examine potential 
compounding effects of age, here we assessed cognitive 
impairment by training mice to associate a context and 
tone with a foot-shock. All mice were capable of learning 
and remembering this relationship. However, HFD mice, 
particularly aged HFD mice, exhibited higher levels of 
freezing when returned to the training context but in the 
absence of the tone. As the levels of freezing in response 
to the tone were similar between groups, this enhanced 
freezing is likely not due to a generalized increase in fear. 
While aged HFD mice exhibited extinction learning, 
their freezing levels remained elevated compared to all 
other groups. This deficit appears to be specific to extinc-
tion learning and are consistent with others suggest-
ing that inflammation within the hippocampus [48] and 
increased cytokine levels [49] produce similar impair-
ments in fear extinction.

Few studies have assessed cognitive effects of HFD 
in an age dependent manner. In rats [50], similar to the 
results presented here, age exacerbated negative cogni-
tive outcomes in animals fed HFD for only 3 days. How-
ever, these aged HFD rats froze less compared to their 
SD counterparts [50], whereas HFD increased freezing in 
our study. This discrepancy may be due to differences in 
diet duration or model system (i.e., rats vs mice). In mice, 
there are conflicting results regarding HFD effects and 
age on cognitive function [23, 51]. One study reported 
age worsened HFD hippocampal dependent learning 
deficits as assessed by elevated plus maze [51]. However, 
another study showed increased anxiety only in adult 
HFD mice versus adult controls, and spatial cognitive 
deficits in aged mice, which diet did not affect [23]. These 
conflicting results may be due to multiple factors, e.g., 
different age of diet initiation, diet duration, cognitive 
testing modalities. Normal age-related cognitive changes 
could also mask subtle HFD effects in older mice. Addi-
tionally, behavioral testing is susceptible to variability 
from multiple factors, such as season, lighting, and light–
dark cycles [52, 53].

To investigate underlying neuroinflammatory 
changes that may contribute to HFD age-dependent 
fear conditioning deficits, we measured hippocampal 
cytokine concentrations and inflammatory gene 
expression. While some studies report increased 
hippocampal inflammatory cytokines in response to age 
or HFD [12, 14, 54], we found no changes, which aligns 
with other published reports [55, 56]. Failure to detect 
differences in hippocampal cytokines may be due to 
the high degree of inflammatory regulation required 
for maintaining homeostasis or the inherent individual 
variation in inflammatory measures. Others have 
observed that providing an immune challenge in the form 
of lipopolysaccharide injection causes a robust increase 
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in inflammatory cytokine production that is impacted 
by age and HFD [57]. Thus, although we detected no 
differences in baseline hippocampal cytokines by diet 
or age, an immune challenge might reveal differences 
in response to challenge. We did however observe 
a significant increase in the number of microglia in 
the hippocampal hilus region in adult mice fed HFD 
compared to adult SD animals. In addition, a positive 
correlation was observed between the body weight and 
microglial numbers, indicating that increased obesity 
is associated with a greater number of hippocampal 
microglia. These findings align with our recent report 
where we show changes in hippocampal microglial 
activation as measured by microglial morphology after 
only 4  days using this model of HFD induced obesity 
and prediabetes [58]. Other have similarly shown that 
HFD causes robust changes in microglial activation as 
measured by changes in morphology [12, 22, 55, 59, 
60], phagocytosis or phagocytic markers [12, 22, 60], 
and microglial numbers or density [12, 60, 61]. This in 
turn contributes to a neuroinflammatory milieu, where 
increased microglial numbers or activation are associated 
with increased gene expression of proinflammatory 
cytokines in the brain [62].

As discussed above, many classic hallmarks of aging, 
including inflammaging and cellular senescence [63–66], 
are also associated with obesity and metabolic dysfunc-
tion [19, 33]. Indeed, we saw HFD induced a premature 
aging phenotype by hippocampal RNA-seq. Similarly, 
hippocampal inflammatory gene expression was age and 
diet dependent. Specifically, HFD upregulated inflam-
matory gene expression in adult animals. Age further 
increased expression, but HFD had the opposite effect 
in aged mice, decreasing inflammatory gene expression 
of many of the same DEGs. Broadly, DEGs fell into cat-
egories related to lymphocyte differentiation or function, 
chemotaxis or inflammation, and innate immune cell 
activation or pattern recognition. Furthermore, several 
DEGs of interest with this differential regulation were 
identified; C-X-C motif chemokine 11 (CxCl11), Zinc 
finger E-box-binding homeobox 1 (Zeb1), and interferon 
regulatory factor-4 (Irf4).

CxCl11 is a chemokine involved in lymphocyte 
differentiation or function, which attracts activated 
T-cells [67]. CxCl11 brain levels increase in response 
to trauma [68] and in neurological diseases, such 
as multiple sclerosis [69] and neuroborreliosis [70]. 
Inflammaging and immunosenescence [71] impact 
lymphocyte differentiation or function, especially 
T-cell function, and CxCl11 levels rise in parallel with 
senescent T-cells in hypertensive patients [72]. The 
second gene of interest, Zeb1, is involved in chemotaxis 
or inflammation [73], both cornerstones [16–19, 74] 

of inflammaging and immunosenescence. Zeb1 may 
regulate adipocyte differentiation in obesity [75, 76] 
and may also play a role in insulin resistance in adipose 
tissue [75] and apoptosis in pancreatic beta cell during 
diabetes [77]. Furthermore, Zeb1 regulates IL-2, which 
activates innate immune natural killer cells, whose 
numbers and function decrease with age [78].

The innate immune system is the body’s first line of 
defense against injury, insult, or infection, and partici-
pates in inflammaging and immunosenescence upon 
continued activation [71]. Irf4, a key player in innate 
immune responses [79], was the final identified gene 
of interest. Irf4 helps regulate PGC-1α, a metabolic co-
factor that promotes fatty acid oxidation, mitochondrial 
biogenesis, and brown fat differentiation [80]. Irf4 is 
expressed by multiple brain cell types, including neurons 
and microglia, and plays a protective role in response to 
stroke [81, 82]. Furthermore, and similar to the results 
here, ischemia in aged mice was associated with a lower 
IRF4 expression compared to younger animals [83], indi-
cating an age-dependent Irf4 inflammatory response to 
insult or injury.

Our study has limitations. First, fear conditioning 
experiments may be limited by known age-associated 
hearing loss in C57BL/6 mice, which may affect the 
ability of aged mice to perform the task. However, the 
28  kHz, 85  dB tone we used can likely be sensed via 
vibration. This, combined with similar performances 
between SD adult and SD aged animals indicates hear-
ing loss likely did not prevent aged mice from forming 
associative fear memory. Secondly, this study used only 
male animals. Sex is an important variable in metabolic, 
immune, and cognitive studies [56, 84, 85]. Given the dif-
ferences observed here in male mice, future studies are 
vital to understand the impact of sex on mechanisms 
leading to cognitive impairment in obesity and metabolic 
dysfunction.

Conclusions
Overall, our data demonstrate that age significantly 
impacts the effect of HFD on the hippocampal inflamma-
tory response and cognitive phenotype, with older aged 
associated with worse outcomes. Metabolic dysfunction 
due to HFD is also impacted by age but to a lesser extent, 
with a potential ‘ceiling effect’ for some metabolic param-
eters. Hippocampal gene expression supports an age-
dependent regulation, which indicate that HFD promotes 
an early aging phenotype.

Methods
Animals and experimental design
Experiments were performed on three cohorts of mice. 
Cohort 1 comprised young C57BL/6 J males, 5 wk of age 
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(strain # 000,664; Jackson Laboratory, Bar Harbor, ME), 
whose peripheral metabolic data and neurological tis-
sues were analyzed in a previously published study [86]. 
Cohort 1 animals were fed ad  libitum 10% fat standard 
diet or 60% high-fat diet (standard diet, SD, D12450B; 
high-fat diet, HFD, D12492; Research diets, New Brun-
swick, NJ), and used in this study only to obtain hip-
pocampal tissue for RNA-seq analysis. Cohort 2 included 
C57BL/6  J males at both 5 wk of age (strain # 000,664; 
Jackson Laboratory, Bar Harbor, ME) and 1  year (yr) of 
age (National Institute of Aging aged rodent colony). 
Cohort 2 animals were used for metabolic phenotyp-
ing (body weight, body composition, glucose tolerance 
testing, plasma insulin, liver pathology, and adipocyte 
hypertrophy), cognitive phenotyping (fear conditioning), 
Nanostring hippocampal inflammatory gene expression, 
and immunologic phenotyping (plasma and hippocam-
pal cytokines). Cohort 2 young and aged mice were fed 
ad libitum either 10% fat SD or 60% HFD (SD, D12450J; 
HFD, D12492; Research diets, New Brunswick, NJ). 
Cohort 3 included C57BL/6  J males either 5 wk (strain 
# 000,664; Jackson Laboratory, Bar Harbor, ME) or 1 yr 
of age (National Institute of Aging aged rodent colony). 
As with cohort 2, cohort 3 young and aged mice were fed 
ad libitum either 10% fat SD or 60% HFD (SD, D12450J; 
HFD, D12492; Research diets, New Brunswick, NJ). All 
animals were acclimated at the University of Michigan 
for at least 1 wk prior to dietary changes. Mice were 
also provided water ad  libitum in a pathogen-free room 
maintained under a 14:10 light:dark cycle at 20 ± 2 °C and 
monitored daily by veterinary staff at the University of 
Michigan’s Unit for Laboratory Animal Medicine.

The three cohorts differed in diet duration (SD or HFD) 
and experiment. Cohort 1 young mice were fed SD or 
HFD for 11 wk or 19 wk for two terminal timepoints to 
perform hippocampal RNA-seq. Cohort 2 young and 
aged mice were fed SD or HFD for 14 wk for a single ter-
minal timepoint. Cohort 3 young and aged mice were 
fed SD or HFD for 16 wk for a single terminal timepoint. 
At terminal timepoints in all cohorts, animals were sac-
rificed using an intraperitoneal injection of 150  mg/kg 
sodium pentobarbital (Fatal-Plus, Vortech Pharmaceu-
ticals, Dearborn, MI). At sacrifice, cohort 1 mice were 
16 wk of age after 11 wk on diet, or 24 wk of age after 
19 wk on diet; cohort 2 mice were 19 wk of age after 14 
wk on diet, or 66 wk of age after 14 wk on diet. Follow-
ing sacrifice for all animals, plasma was taken for meta-
bolic phenotyping and mice were then perfused with 
phosphate-buffered saline and tissues harvested. Cohort 
1 hippocampal tissue was isolated and snap frozen and 
stored at -80° C for later RNA extraction and RNA-seq. 
Cohort 2 terminal plasma was isolated to measure insu-
lin and cytokine levels, hippocampal tissue was isolated, 

snap frozen, and stored for later cytokine measures 
or RNA extraction for NanoString inflammatory gene 
expression analysis, and liver and epididymal fat tissues 
were formalin fixed for histological analysis. Cohort 
3 brains were fixed in 4% paraformaldehyde for later 
immunohistochemistry. All procedures were carried out 
per the University of Michigan’s Committee on Use and 
Care of Animals under protocol numbers PRO0010039, 
PRO00010247, PRO00006140, and PRO00008116.

Metabolic phenotyping
Cohort 1 mice underwent metabolic phenotyping as 
previously reported [86]. Cohort 2 young and aged mice 
underwent terminal metabolic phenotyping after 14 wk 
on diet. Metabolic phenotyping was performed on all 
animals according to the Diabetic Complications Con-
sortium guidelines (https:// www. diaco mp. org/ share/ 
proto cols. aspx) and as previously published [30, 31]. 
At terminal, animals were weighed and glucose toler-
ance tests were performed, as previously published [30]. 
Briefly, mice underwent an intraperitoneal injection of 
1 g glucose per 1 kg body weight and blood glucose read-
ings were recorded prior to injection and at 15, 30, 60, 
and 120 min (min) post injection.

Additional metabolic phenotyping for cohort 2 
included body composition quantification, plasma insu-
lin concentration, liver pathology scoring, and adipose 
tissue histomorphometry. Body composition analysis was 
performed after cognitive phenotyping and immediately 
prior to study termination at 14 wk using a EcoMRI 4in1-
900 (EcchoMRI LLC, Houston, TX) at the Metabolism, 
Bariatric Surgery and Behavior core as part of the Uni-
versity of Michigan Mouse Metabolic Phenotyping core. 
Terminal plasma insulin concentrations were measured 
using a rat/mouse insulin ELISA (catalog # EZRMI-13 k, 
Millipore Sigma-Aldrich, St. Louis, MO) by the Univer-
sity of Michigan Mouse Metabolic Phenotyping core. 
Formalin fixed liver tissue samples collected at study end-
point after 14 wk of diet were processed by the Univer-
sity of Michigan in vivo animal core and assessed for liver 
pathology, which included measures of macrosteatosis 
(droplet counts within 100–1000 μm2 in area, normal-
ized to tissue area) and Kleiner scoring (32–34). Kleiner 
scoring included measures of lobular inflammation (scale 
of 0–3), ballooning degeneration (scale of 0–2), steatosis 
(scale of 0–3), and a summed non-alcoholic fatty liver 
disease (NAFLD) activity score (NAS) (scale of 0–8).

Formalin fixed epididymal white adipose tissues col-
lected at study endpoint after 14 wk of diet were paraf-
fin embedded, sectioned, stained with hematoxylin and 
eosin, and assessed for fat histomorphometry, as pre-
viously published [87, 88]. Briefly, four representative 
images were taken per animal at a 10X magnification, and 

https://www.diacomp.org/share/protocols.aspx
https://www.diacomp.org/share/protocols.aspx
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histomorphological analysis was performed using Meta-
morph software version 7.10.3.279. Images were thresh-
olded to include adipocytes with a shape factor between 
0.35 and 1 (shape factor of 0 being a straight line, shape 
factor of 1 being a perfect circle), an equivalent sphere 
surface area between 5,000 μm2 and 1 ×  106 μm2, and 
areas between 10 μm2 and 1.5 ×  103 μm2. Objects bor-
dering the edge of the image were excluded. Following 
initial thresholding, manual adjustments were made to 
add, remove, cut, or join adipocytes. For each image, adi-
pocytes were binned from 0 to 2 ×  104 μm2 at 250 μm2 
increments. Using the frequency for each binned adipo-
cyte size, the percentage of adipocytes belonging to each 
bin was calculated for each image and the images for 
each experimental group were averaged to determine dif-
ferences for each binned adipocyte size between groups.

Cognitive phenotyping
Cohort 2 young and aged mice on SD and HFD under-
went fear conditioning prior to study termination after 
14 wk on diet. Fear conditioning was carried out as pre-
viously published [89, 90]. In brief, mice were trained to 
anticipate a foot shock by training with a 180 s baseline, a 
tone (28 kHz, 85 dB, 30 s), followed by the 0.75 mA foot 
shock. Tone/shock pairings were completed 2 additional 
times, for a total of 3 pairings with a 120 s gap following 
each tone. On days 2, 3, and 4, mice were placed into the 
chamber for a total of 30  min, with no tones or shocks 
to assess fear extinction. The first 5  min of time in the 
chamber on day 2 was used to assess contextual memory. 
On day 5, animals were assessed for cued (tone) memory. 
The chamber was re-configured to represent a different 
context, i.e., different flooring type and wall shape. In 
addition, the background odor, noise, and lighting were 
altered [89, 90]. The mice were placed into the reconfig-
ured chamber and given a 180  s baseline, followed by a 
28 kHz tone (30 s). Freezing behavior, i.e., the absence of 
movement, excluding breathing, was measured and used 
to calculate percent freezing, i.e., the amount of time 
spent freezing out of the total amount of time while in 
the chamber. Percent freezing was used to assess fear 
extinction, cued memory, and contextual memory.

Gene expression
Hippocampi from mice on SD and HFD from cohorts 1 
and 2 underwent RNA extraction and gene expression 
analysis. Cohort 1 hippocampal tissues were collected 
at study endpoint after 11 wk or 19 wk of diet and pro-
cessed for RNA-seq, as previously published [31]. Cohort 
2 hippocampi were collected at study endpoint after 14 
wk of diet and RNA extracted for NanoString nCounter 
transcriptomics analysis (NanoString Technologies, Seat-
tle, WA). For both cohorts, RNA was isolated using an 

RNAeasy kit (Qiagen, Germantown, MD), per the manu-
facturer’s instructions.

Briefly, for RNA-seq on cohort 1 hippocampi, RNA 
quality was assessed using a 2100 Bioanalyzer at the 
University of Michigan’s Advanced Genomics Core and 
used to construct a library, which was sequenced using 
the NovaSeq 6000 (Illumina, San Diego, CA) to obtain 
approximately 60 million 50  bp paired-end reads per 
sample. The raw FASTQ files were first cleaned by remov-
ing low quality reads (Q < 30) and adapters with Trimmo-
matic [91]. All clean reads were mapped to the mouse 
reference genome mm10 (GRCm38) using HISAT2 map-
per [92]. FeatureCounts [93] was used to summarize the 
reads mapped to mouse genes. Fragments per kilobase of 
transcript per million mapped reads values were calcu-
lated for all genes to represent their expression levels.

For NanoString on cohort 2 hippocampi, RNA sam-
ples were sent to Michigan State University for nCoun-
ter analysis using NanoString’s mouse immunology 
panel (catalog # PLS PPL M IMM) with 19 spike-in genes 
(Iba1, Aim2, Atf6, Cd200r, cGAS, Decaf1, Chop, Dgat2, 
Perk, Elovl6, Ire1a, Gfap, Jnk, Mapt, Mmp12, Nlrp3, Asc, 
Scd1, Tmem119). NanoString data were processed using 
nSolver 4.0 software. Any samples not passing qual-
ity control were removed and background thresholding 
was performed so that any samples with counts below 
the lowest negative control (a relative gene expression 
level of 4 counts) were set to that value for analysis. Data 
were then normalized to the positive controls and to the 
housekeeping genes provided within the panel. Normal-
ized data were then used for subsequent statistical analy-
sis of relative gene expression (counts).

Immunological phenotyping
Terminal plasma and hippocampal lysates from cohort 
2 young and aged mice on SD and HFD were used to 
measure cytokine concentrations via enzyme-linked 
immunosorbent assay (ELISA). Plasma was analyzed for 
tumor necrosis factor alpha (TNF-α), monocyte chem-
oattractant protein-1 (MCP-1), interleukin 6 (IL-6), and 
interleukin 1 beta (IL-1β). Hippocampal lysates were 
analyzed for TNF-α, MCP-1, IL-6, IL-1β, interferon 
gamma (IFN-γ), and interleukin 10 (IL-10). ELISA was 
performed by the University of Michigan Immune Moni-
toring Core of the Rogel Cancer Center. Terminal IHC 
for analysis of hippocampal microglial infiltration was 
performed on cohort 3 hemi brains similar to previous 
[58]. In brief, following sacrifice, hemi-brains were dis-
sected and fixed in 4% paraformaldehyde for a minimum 
of 48  h, then passed through a sucrose gradient. Brains 
were then embedded in OCT and frozen at -80  °C for 
later sectioning and staining with IBA-1 (rabbit anti-Iba1, 
1:1000; catalog # 019–19,741, Wako, Richmond, VA) for 
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microglia and Hoechst for nuclear staining. Images were 
taken on a Leica Stellaris 8 Falcon confocal microscope 
with a 40X objective used to take 30 µm Z-stack images. 
Images were used to count the number of microglia in 
the medial area of the hilus nearest to the CA4 region of 
the hippocampus.

Bioinformatics and statistical analysis
Differentially expressed gene analysis for RNA-seq data 
was performed with DESeq2 package [94]. Differentially 
expressed genes (DEGs) were identified with an adjusted 
P-value < 0.05. To identify the overrepresented bio-
logical functions, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways and Gene Ontology (GO) 
enrichment analysis were performed using a hypergeo-
metric test with our in-house R analysis package richR 
(http:// github. com/ hurlab/ richR). The terms with Benja-
mini–Hochberg corrected P-values < 0.05 were deemed 
as significantly overrepresented biological functions in 
each DEG set.

Statistical analysis of all other data was performed 
using either Prism (version 9; GraphPad Software, La 
Jolla, CA, USA) or SAS 9.4 software (SAS Institute, 
Cary, NC). GraphPad analyses were performed using 
either t-test or analysis of variance (ANOVA) and sig-
nificance of multiple comparisons determined using 
Tukey’s test. SAS analyses were performed using the 
Proc Mixed function, and for NanoString data cartridge 
was set as a random effect to account for potential dif-
ferences between batches. Normality was established 
using Anderson–Darling, D’Agostino-Pearson omni-
bus, Shapiro–Wilk, and Kolmogorov–Smirnov tests. 
Non-normal data were log transformed and if log 
transformation did not result in normality, non-para-
metric analysis was performed using Kruskal–Wallis 
test. Data are presented as either means or least square 
means ± standard deviation or as mean ± SEM and are 
indicated as such in the figure legends.
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