
Liang et al. Immunity & Ageing           (2023) 20:70  
https://doi.org/10.1186/s12979-023-00398-w

REVIEW Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Immunity & Ageing

Impact of NAD+ metabolism on ovarian 
aging
Jinghui Liang1, Feiling Huang1, Zhaoqi Song2, Ruiyi Tang1, Peng Zhang3* and Rong Chen1* 

Abstract 

Nicotinamide adenine dinucleotide (NAD+), a crucial coenzyme in cellular redox reactions, is closely associ-
ated with age-related functional degeneration and metabolic diseases. NAD exerts direct and indirect influences 
on many crucial cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cellular senes-
cence, and immune cell functionality. These cellular processes and functions are essential for maintaining tissue 
and metabolic homeostasis, as well as healthy aging. Causality has been elucidated between a decline in NAD levels 
and multiple age-related diseases, which has been confirmed by various strategies aimed at increasing NAD levels 
in the preclinical setting. Ovarian aging is recognized as a natural process characterized by a decline in follicle number 
and function, resulting in decreased estrogen production and menopause. In this regard, it is necessary to address 
the many factors involved in this complicated procedure, which could improve fertility in women of advanced 
maternal age. Concerning the decrease in NAD+ levels as ovarian aging progresses, promising and exciting results are 
presented for strategies using NAD+ precursors to promote NAD+ biosynthesis, which could substantially improve 
oocyte quality and alleviate ovarian aging. Hence, to acquire further insights into NAD+ metabolism and biology, 
this review aims to probe the factors affecting ovarian aging, the characteristics of NAD+ precursors, and the current 
research status of NAD+ supplementation in ovarian aging. Specifically, by gaining a comprehensive understanding 
of these aspects, we are optimistic about the prominent progress that will be made in both research and therapy 
related to ovarian aging.
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Introduction
Ongoing advancements in NAD+ biology research con-
tinue to elucidate the mechanisms underlying age-related 
diseases. NAD+ , the reduced form of NAD, is an omni-
present coenzyme found in all human cells. It plays a 
crucial role in maintaining energy and redox homeosta-
sis, regulating a vast network of systems across diverse 
cellular compartments and tissues [1–3]. In addition to 
its role in energy metabolism, NAD+ is recognized as a 
crucial signaling molecule and serves as the limiting sub-
strate for numerous enzymes involved in DNA repair, 
epigenetic regulation, posttranslational modification, 
and metabolic adaptation [4]. The decline in NAD+ lev-
els with aging has been thoroughly documented [5], 
and supplementation with NAD+ precursors have been 
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shown to have the potential to elevate NAD+ levels, both 
in  vitro and in  vivo, serving as a promising strategy to 
combat age-related dysfunction and disease.

The association between NAD+ levels and health was 
initially established nearly a century ago by Elvehjem 
and his colleagues. In 1937, they discovered that pellagra 
resulted from a dietary insufficiency of niacin, resulting 
in reduced NAD+ levels [6]. Subsequent studies have 
demonstrated the correlation between low NAD+ levels 
and various disease conditions, such as metabolic dis-
orders, neurodegenerative diseases, and aging [7–10]. 
Consequently, there is considerable interest in compre-
hending the influence of NAD+ metabolism on the ini-
tiation of diseases, particularly age-related conditions. In 
recent times, the restoration of NAD+ levels through the 
supplementation of NAD+ precursors has emerged as a 
promising therapeutic approach for age-related diseases 
[11–13], as evidenced by the beneficial effects observed 
in rodent models.

Ovarian aging, characterized by a decrease in both the 
quantity and quality of oocytes, along with an overall 
reduction in ovarian activity [14–16], poses a significant 
challenge to female reproductive health. Despite ongo-
ing efforts, the molecular mechanisms responsible for 
ovarian aging and longevity remain largely unexplored, 
and the correlation between various factors and ovarian 
health necessitates further investigation. At birth, women 
have approximately 2 million oocytes, which dimin-
ish to a mere 1000 primordial follicles by menopause 
[17]. Delaying parenthood can lead to fertility issues for 
women of advanced maternal age, as their diminished 
ovarian reserve is linked to higher rates of aneuploidy 
and suboptimal outcomes in embryonic development 
and maturation following both natural conception and 
assisted reproductive technology [18, 19]. Recently, 
there has been a rapid increase in studies exploring vari-
ous aspects of ovarian aging, including stress, genet-
ics, diseases, dietary habits, and lifestyle. Obtaining a 
comprehensive understanding of these factors and their 
mechanisms is crucial for extending reproductive longev-
ity and enhancing women’s health.

Strategies focused on decelerating ovarian aging and 
enhancing the quality and quantity of oocytes have made 
significant progress in recent decades [20–22]. Given that 
mitochondrial dysfunction and oxidative stress are piv-
otal factors in ovarian aging, the identification of drugs 
capable of mitigating ovarian disorders can play a cru-
cial role in combating ovarian aging. These drugs can 
function as antioxidants or as molecules that modulate 
cellular signaling pathways to safeguard ovarian cells 
against oxidative stress. Examples of antioxidants include 
melatonin [23–26], coenzyme Q10 [27–30], folic acid 
[31], resveratrol [32, 33], and vitamins C and E [34, 35]. 

Although growth hormone (GH) is not classified as an 
antioxidant, it has the ability to impact the cellular-level 
oxidative stress signaling pathway [36, 37]. Employing 
small molecules or procedures involving mitochondrial 
transfer/replacement to enhance mitochondrial function 
has exhibited effectiveness in reducing oxidative damage 
to the ovaries [38].

In recent years, NAD has emerged as a promising reg-
ulator in mitigating age-related functional decline and 
diseases. In addition to improving mitochondrial func-
tion, this molecule enhances various other cellular pro-
cesses and functions associated with antiaging effects. 
Encouragingly, certain studies have shown the potential 
of NAD precursors as a method of supplementing the 
body’s NAD levels. Moreover, the relationship between 
NAD+ levels and ovarian aging has gradually become 
clearer, with studies indicating that strategies to boost 
NAD+ can effectively alleviate ovarian aging, improve 
oocyte quality, and enhance fertility. Nevertheless, the 
specific mechanisms responsible for these effects remain 
unclear and necessitate further investigation and clari-
fication [8, 39, 40]. This review offers a comprehensive 
overview of the current understanding of NAD+ biol-
ogy and metabolism, the factors affecting ovarian aging, 
the NAD+ precursors, and the therapeutic potential of 
NAD+ boosting in countering ovarian aging.

Factors affecting ovarian aging
Mitochondrial dysfunction and oxidative stress
The mitochondrion is a pivotal organelle in oocytes, 
playing a critical role in energy production and deter-
mining cell fate [41–44]. Being a semiautonomous struc-
ture with its DNA, the harmonious interaction between 
the nuclear and mitochondrial DNA is crucial for the 
proper functioning of the mitochondrion [45]. Impaired 
mitochondria, characterized by the accumulation of 
mtDNA mutations, reduced oxidative phosphorylation 
(OXPHOS) activity, increased oxidative damage, altered 
mitochondrial quality control, decreased biogenesis 
and clearance efficiency, and disrupted mitochondrial 
dynamics, have been linked to ovarian aging [46–49] 
(Fig. 1).

According to the free radical theory, oxidative stress, 
resulting from elevated levels of intracellular reactive 
oxygen species (ROS), is a crucial factor contributing to 
mammalian cell senescence, including female reproduc-
tive aging [50–53]. ROS encompass both free and non-
free radicals, primarily generated as byproducts during 
the metabolic processes of eukaryotes [54]. Moderate 
levels of ROS are known to be involved in cell signaling 
and can promote cell survival, proliferation, and differ-
entiation [55, 56]. However, when ROS levels surpass a 
cell’s oxidation resistance and repair capabilities, they 
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induce oxidative stress, causing direct oxidative dam-
age to biological molecules in the cell environment and 
leading to aging and disease development [57, 58]. Due 
to the positive correlation between the levels of ROS in 
the ovary and a woman’s age [59–61], human oocytes, 
which remain dormant in the ovary for decades, are 
particularly vulnerable to oxidative stress. Endogenous 
antioxidants, such as superoxide dismutase and cata-
lase, present in the ovarian environment are crucial for 
ROS clearance. However, their levels decrease with age, 
weakening the ovary’s ability to remove ROS [62–65]. 
A recent study using single-cell transcriptomics in non-
human primates suggested that oxidative damage is a 
critical factor contributing to the age-related decline in 
ovarian function [66]. ROS accumulation in the ovary 
reduces communication between oocytes and GCs, 
triggering GC apoptosis [67–69], accelerating corpus 
luteum degeneration [70, 71], hindering oocyte matura-
tion before ovulation [72, 73], and ultimately leading to 
ovarian aging. The well-established correlation between 
telomere length in CCs and oocyte and embryo quality 
[74] highlights that ovarian oxidative stress can cause 
telomere shortening [75, 76]. NAD plays a critical role 
in cellular redox reactions, and the decrease in NAD 

content is closely associated with mitochondrial dys-
function and the generation of oxidative damage.

mtDNA disorders
Mitochondria play a critical role in synthesizing the 
energy-rich molecule adenosine triphosphate (ATP) 
through OXPHOS, providing energy to sustain cell 
activities [42, 77]. Electron leakage from the mitochon-
drial respiratory chain is a significant cause of intracel-
lular ROS production. This susceptibility arises from the 
absence of protective histones or DNA-binding proteins 
in mtDNA, which is located within mitochondria, mak-
ing it prone to ROS-induced damage [78–80]. ROS gen-
eration and mtDNA damage are closely intertwined, with 
the former often overlapping with the latter. As a con-
sequence of ROS generation, mitochondrial fission, and 
mtDNA damage increase, primarily affecting the stromal 
side of the inner mitochondrial membrane [81, 82]. The 
gradual impairment in respiratory chain function result-
ing from mtDNA damage and mutations leads to an 
exponential increase in oxidative stress, especially with 
age. Female mice experience a shortened lifespan and 
exacerbated ovarian senescence due to the accumulation 
of mtDNA mutations in the germline [83, 84] (Fig.  1). 

Fig. 1 Factors affecting ovary aging. Many factors including mitochondrial dysfunction, apoptosis, inflammation, mtDNA mutations, oxidative stress 
and epigenetics changes have been shown linked to ovarian aging
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Furthermore, younger women exhibit a higher mtDNA 
copy count per oocyte than that of elderly women, indi-
cating reduced mtDNA in the ovary during aging [85]. 
Studies have demonstrated that autologous or allogeneic 
mitochondrial transplantation improves oocyte quality 
and in  vitro fertilization outcomes in both human and 
other animal species [86, 87].

Epigenetic changes
Epigenetic modifications are linked to the decline in 
oocyte quality with ovarian aging [88] (Fig.  1). The 
expression of DNA methyltransferases and histone 
acetyltransferases, which impact epigenetic modifica-
tion in oocytes, changes with age [89, 90]. For instance, 
decreased expression levels of DNA methyltransferases 
in 35- to 40-week-old mouse oocytes and preimplanta-
tion embryos result in low DNA methylation levels [91]. 
Additionally, aging affects histone methylation in mouse 
germinal vesicle oocytes [92], while older women exhibit 
a lack of certain histone marks compared to those of 
younger women. The transcription of histone deacetylase 
is downregulated in aging mouse oocytes, while histones 
remain acetylated in 10-month-old female mouse oocytes 
[93]. This finding suggests that histone modification in 
aging oocytes before ovulation may be impacted, poten-
tially leading to embryonic death during development. 
The mRNA expression profile of human second meiotic 
division oocytes is related to aging and has a greater neg-
ative impact on histone acetylation as the mother ages 
(van den [94]. There is growing evidence that microRNAs 
play a crucial role in regulating oocyte DNA methylation 
and follicle development across various species [95–98]. 
Disruptions in microRNA expression also contribute to 
the development of ovarian aging [99, 100]. Decreased 
cellular NAD levels lead to impaired function of NAD-
dependent and NAD-consuming enzymes involved in 
DNA repair and genome integrity, potentially contrib-
uting to aging-related DNA mutations and epigenetic 
changes.

Apoptosis
The ovary is a complex and heterogeneous organ com-
posed of diverse cell types, with cumulus cells (CCs), 
playing a crucial role in the aging process. CCs, derived 
from granulosa cells (GCs), have been implicated in age-
related elevations in oocyte apoptosis [101–103] (Fig. 1). 
The soluble molecules produced by CCs can adversely 
affect aging oocytes, leading to the acceleration of oocyte 
aging and impaired oocyte development and maturation 
potential [104, 105]. In  vitro animal studies have dem-
onstrated that coculture with CCs can improve oocyte 
maturation [106], while oocytes from older females have 
a marked decrease in the survival rate compared to that 

of oocytes from younger mice [107]. Studies in human 
patients have also revealed that GCs from young patients 
exhibit significantly lower levels of apoptosis than those 
from aged patients [108]. Moreover, animal experiments 
have shown that increased apoptosis levels in GCs result 
in a sharp decline in ovulation and fertility [109]. B-cell 
lymphoma-2 (BCL2), a key antiapoptotic factor, was 
found to be significantly upregulated in mature oocytes 
compared to immature oocytes, further reinforcing the 
role of CCs in accelerating the apoptosis in oocytes and 
aging of the ovary [110]. Recent research suggests that 
apoptosis and autophagy in aging cells contribute to the 
decline in NAD levels in the organism [111, 112].

Inflammation
Recent research highlights inflammation as a hallmark 
of ovarian aging [113, 114] (Fig.  1). Inflammatory aging 
refers to a chronic, low-grade proinflammatory state that 
accompanies aging and impacts various aspects of ovar-
ian aging, such as oocyte maturation [115, 116], ovula-
tion [117, 118], implantation [119], and delivery [120]. 
Animal studies have revealed an increase in gene expres-
sion related to chronic inflammation with age [121–123]. 
During the aging process, researchers have observed an 
increase in the populations of CD4 + cells, B cells, and 
macrophages in the ovary, as well as serum concentra-
tions and intraovarian mRNA levels of specific proin-
flammatory cytokines such as IL-1α/β, IL-6, and TNF-α 
and inflammasome genes such as ASC and NLRP3 
[113]. Activation of the NLRP3 inflammasome is linked 
to age-related inflammation and dysfunction in various 
organs. Studies knocking out the NLRP3 and ASC genes 
showed a decrease in intraovarian proinflammatory 
cytokine expression and a significant increase in follicle 
numbers, indicating that inflammation contributes to 
the age-related decline in ovarian reserve and that anti-
inflammation may prevent ovarian insufficiency [124–
126]. Recent studies suggest that therapeutic approaches 
aimed at elevating cellular NAD levels during the aging 
process can effectively reduce inflammation and the bur-
den of senescent cells [127].

Telomeres length and telomerase activity
Telomeres are dynamic nucleoprotein-DNA structures 
located at the ends of eukaryotic chromosomes, crucial 
for maintaining genome integrity and chromosomal sta-
bility [128, 129]. Their length gradually shortens with 
each cell division. Telomerase is a reverse transcriptase 
enzyme that assists in elongating the highly repetitive 
DNA sequences of telomeres [130]. Studies have revealed 
that excessive telomere shortening contributes to cel-
lular aging and is closely associated with reproductive 
lifespan and overall life expectancy [131, 132]. Research 
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has found that in leukocytes of postmenopausal women, 
telomeres are shorter compared to age-matched women 
still experiencing menstruation. Additionally, women 
with longer telomeres tend to enter menopause at a later 
stage, indicating that telomere length serves as a signifi-
cant marker of reproductive aging [133]. Investigations 
into human granulosa cells have linked telomere short-
ening and reduced or absent telomerase activity to latent 
ovarian insufficiency and primary ovarian insufficiency 
[134, 135].

Further research in assisted reproductive technol-
ogy has shown that immature oocytes have significantly 
reduced telomere length compared to mature oocytes 
[136]. The length of telomeres in follicular cells exhibits 
a positive correlation with oocyte and embryo quality, 
and decreased telomere length may be associated with 
oocyte and early embryo aneuploidy [74, 137]. Oxidative 
stress is considered a major cause of telomere shortening 
[75]. With age, the levels of reactive oxygen species (ROS) 
increase in aging ovaries, making them more susceptible 
to telomeric oxidative damage and leading to a decline 
in oocyte developmental competence. The use of anti-
oxidants can inhibit telomere shortening, fusion, DNA 
damage, and chromosomal instability in oocytes, thereby 
alleviating ROS-mediated damage and maintaining the 
quality of aging oocytes and follicles [138, 139].

NAD+ biology and metabolism
An introduction to NAD+ 
NAD+ was first discovered in 1906 by Harden and Young 
as a low-molecular-weight substance that accelerates the 
fermentation of yeast extracts [140]. In 1930, its chemi-
cal composition was reported to be an adenine, a phos-
phate, and reducing sugar groups [141]. NAD+ was 
discovered in 1936 to possess the capability of hydride 
transfer between molecules, rendering it a crucial coen-
zyme in redox reactions and an indispensable constitu-
ent of the energy metabolism of all organisms [142]. 
NAD+ plays a regulatory role in the activity of dehydro-
genases engaged in diverse catabolic pathways, including 
glycolysis, glutamine degradation, and fatty acid oxida-
tion. Apart from its involvement in energy metabolism, 
NAD+ acts as a cofactor for nonredox NAD+ -dependent 
enzymes, including sirtuins, CD38, SARM1, poly(ADP-
ribose) polymerases (PARPs), ADP-ribosyltransferases 
(ARTs), and RNA polymerases [143]. These enzymes are 
crucial in maintaining intracellular homeostasis [112, 
144, 145]. Reactions utilizing NAD+ as a substrate or 
cofactor generate nicotinamide (NMA) as a byproduct, 
which is significant to numerous metabolic pathways 
and cellular processes. Extensive studies have revealed 
the intricate and dynamic nature of NAD+ metabolism, 

transport, and function, rendering it an area of continu-
ous research [146–148]. NAD+ compartmentalization 
within cells is a complex phenomenon involving three 
primary NAD+ subcellular pools in the cytoplasm, mito-
chondria, and nucleus (Fig.  2). The exchangeability of 
NAD+ between the cytosolic and nuclear pools is well 
established, with these two pools consistently exhibiting 
comparable NAD+ concentrations [149–151]. However, 
the interchangeability of the mitochondrial NAD+ pool 
with the nucleocytosolic NAD+ pool remains a topic of 
debate in the scientific community. Evidence from yeast 
suggests the presence of mitochondrial NAD+ trans-
porters [152], while studies in mammals indicate that 
mitochondria can take up NAD+ precursors and intact 
NAD(H) [153–155]. These findings imply that mito-
chondrial NAD+ pools can indeed exchange with other 
NAD+ pools. The proportion and regulation of these 
NAD+ pools can vary greatly depending on the orga-
nelle, tissue, cell type, and individual’s age, with enzymes 
related to NAD+ biosynthesis and degradation being 
highly compartmentalized and independently regulated 
[2, 149, 156].

Synthesis of NAD+ 
In mammals, with neurons being the exception, 
NAD+ cannot be imported into cells [157]. Thus, 
NAD+ synthesis occurs through either the de novo 
pathway using tryptophan or the Preiss-Handler path-
way involving vitamin B3 derivatives such as nicotinic 
acid (NA) (Fig.  2). The enzyme responsible for de novo 
NAD synthesis is predominantly expressed in the liver 
and kidney [158–161]. De novo synthesis is also called 
the kynurenine pathway, which begins with complex 
reactions converting tryptophan into quinolinic acid 
(QA) and then producing nicotinic acid mononucleo-
tide (NAMN) from QA and 5-phosphoribosyl-1-py-
rophosphate (PRPP) via the catalytic action of quinolinic 
acid phosphoribosyltransferase (QaPRT) [162]. NAMN 
can also be synthesized via the Preiss-Handler pathway, 
which utilizes vitamin B3 [163]. This molecule is con-
verted into nicotinic acid adenine dinucleotide (NAAD) 
by nicotinamide mononucleotide adenylyl transferase 
(NMNAT). Subsequently, NAD+ synthase deamidates 
NAAD, leading to the formation of NAD+ [164].

To maintain intracellular NAD+ levels, the salvage 
pathway is the primary source of newly synthesized 
NAD+ , utilizing nicotinamide (NAM), nicotinamide 
riboside (NR), and nicotinamide mononucleotide 
(NMN). NAM can be obtained from food or produced 
by NAD+ -consuming enzymes [165]. It undergoes 
two reactions: first, NAM is catalytically converted 
into NMN via the catalytic action of nicotinamide 
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phosphoribosyltransferase (NAMPT) and PRPP [166]. 
Then, NMN is converted into NAD+ by conjugating the 
adenylyl moiety of ATP, catalyzed by NMNAT [167]. 
NAMPT is widely distributed in all NAD+ -related cel-
lular compartments and exhibits dynamic levels [168, 
169]. This enables it to regulate the body’s response 
to nutritional status, stress, exercise, and circadian 
rhythm, all of which are relevant to the functions of 
NAD+ [170–172]. Therefore, NAM is widely regarded 
as a common NAD+ precursor in cells. Mammalian 
cells possess three NMNAT isoenzymes localized in 
different subcellular locations: NMNAT1 in the nucleus 
[173, 174], NMNAT2 in the cytoplasm and Golgi appa-
ratus [167], and NMNAT3 in mitochondria [169, 175]. 
Conversely, NR is phosphorylated into NMN through 
nicotinamide riboside kinase (Nrk) phosphorylation 
before undergoing conversion into NAD+ by NAMPT 
[176].

Degradation of NAD+ 
The sirtuin enzyme family is critical in regulating a 
wide range of biological processes, including metabo-
lism, stress, circadian rhythm, and aging [177, 178]. 
These enzymes function as NAD+ -dependent deacety-
lases, utilizing NAD+ as a cosubstrate to remove acyl 
groups from their substrates and generating 2-O-acyl-
ADP-ribose and NAM. In mammals, the sirtuin gene 
and protein family comprises seven members (SIRT1-
SIRT7), each exhibiting distinct cellular localizations 
and functions [179, 180]. SIRT1 and SIRT6 reside in 
the nucleus, where they perform crucial roles in DNA 
repair and genome stability. In contrast, SIRT7 is spe-
cifically localized in the nucleolus. In mitochondria, 
SIRT3, SIRT4, and SIRT5 are responsible for regulating 
mitochondrial homeostasis. In the cytoplasm, SIRT1, 
SIRT2, and SIRT5 perform significant roles in circadian 
rhythm and gene expression. Based on their distinct 

Fig. 2 Overview of NAD+ metabolism pathway. NA: nicotinic acid, NAM: nicotinamide, QA: quinolinic acid, NMN: nicotinamide mononucleotide, 
NR: nicotinamide riboside, IDO, indoleamine 2,3-dioxygenase, TDO, tryptophan 2,3-dioxygenase, KMO, 3-hydroxykynurenine (3-HK) by kynurenine 
3-monooxygenase, KYNU, tryptophan 2,3-dioxygenase, 3HAO. 3-hydroxyanthranilic acid oxygenase, ETC, NAMN: nicotinic acid mononucleotide, 
NAD: Nicotinamide adenine dinucleotide, NADH: reduced form of NAD, NADP: Nicotinamide adenine dinucleotide phosphate, NADPH: reduced 
form of NADP, NAAD: nicotinic acid adenine dinucleotide, NAMPT: nicotinamide phosphoribosyltransferase, NMNAT: nicotinamide mononucleotide 
adenylyltransferase, QPRT: quinolinic acid phosphoribosyltransferase, NaPRT: nicotinic acid phosphoribosyltransferase, Nrk: nicotinamide riboside 
kinase, NADS: NAD synthase, PARP: poly (ADP-ribose) polymerase, TCA, tricarboxylic acid, ETC, electron transport chain
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Km values for NAD+ , sirtuins can be categorized into 
two groups: sirtuins with a Km value below the physio-
logical range of NAD, such as SIRT2, SIRT4, SIRT5, and 
SIRT6, and sirtuins whose activity is highly dependent 
on the availability of NAD, including SIRT1 and SIRT3. 
Sirtuins are of great importance due to their ability to 
influence cell homeostasis through NAD+ levels, mak-
ing them promising targets for antiaging therapy.

The PARP protein family serves as an essential con-
sumer of NAD+ . This family consists of 17 members 
in humans and 16 members in mice, and it plays a 
pivotal role in DNA repair and genome integrity pres-
ervation. PARPs facilitate the cleavage of NAD+ to 
produce NAM and ADP-ribose. This ADP-ribose is 
subsequently attached to PARP and other receptor pro-
teins, forming a polymer bond in a process referred to 
as poly(ADP-ribosyl) acylation (PAR acylation). PAR 
acylation is a dynamic, posttranscriptional modifica-
tion that plays a crucial role in maintaining DNA repair 
and genome stability [181, 182]. Of the PARPs, PARP1, 
PARP2, and PARP3 are localized in the nucleus and 
consume a significant amount of NAD+ . As we age, 
both DNA damage and PARP activity increase. Among 
all PARPs, only PARP1, PARP2, and PARP3 are located 
within the nucleus. Of these, PARP1 and PARP2 are 
the primary consumers of NAD+ . Upon DNA damage, 
PARP1 is the sole contributor to approximately 90% of 
PARP activity [181]. Because of the fact that the Km 
value of PARPs is significantly lower than the physio-
logical range of NAD, PARPs have a greater advantage 
in competing for the limited NAD resources than sir-
tuins [183, 184].

The cyclic ADP-ribose (cADPR) synthases constitute 
another group of NAD+ consumers, with CD38 and 
CD157 being the most prominent in cells. They possess 
both glycohydrolase and ADP-ribosyl cyclase activi-
ties, breaking down NAD+ into NAM and adenosine 
ADP-ribose and then producing cADPR [185]. Acting 
as an intercellular messenger, cADPR impacts calcium 
signal transduction, ROS production, and apoptosis 
[186]. In addition to NAD+ , CD38, and CD157 can also 
employ NMN and NR as alternative substrates, respec-
tively [187–189]. Therefore, inhibitors of CD38 and 
CD157 hold the potential in restoring NAD+ levels in 
aging individuals and treating metabolic disorders and 
aging-related diseases [190]. The aging process causes 
an elevation in the levels of CD38 and CD157, leading to 
increased utilization of NAD+ [188, 191]. This phenom-
enon contributes to the decreased NAD+ levels observed 
in aged mice compared to young mice. Studies have dem-
onstrated that CD38 deficiency in mice eliminates the 
reduction in NAD+ during aging [192], thereby indicat-
ing its potential role in aging-related diseases [112, 193].

SARM1, primarily expressed in neurons, is classified 
as an NAD+ glycohydrolase and cyclase, and its degrada-
tion of NAD+ is closely tied to axonal destruction [194, 
195]. NAD+ is additionally involved in the formation of 
NAD+ RNA caps,however, its physiological relevance 
remains to be elucidated [196, 197].

Function of NAD+ 
Metabolism
NAD+ is an indispensable coenzyme intricately involved 
in cellular redox reactions, assuming an important role 
in cellular energy metabolism. It is engaged in diverse 
catabolic pathways, such as glycolysis, amino acid degra-
dation, and fatty acid oxidation. Within these biochemi-
cal processes, NAD+ is reduced by accepting hydride 
ions, forming NADH. Subsequently, NADH transfers the 
acquired electrons to the electron transport chain, culmi-
nating in the production of ATP. Beyond its fundamen-
tal role in redox reactions, NAD+ exhibits versatility by 
undergoing phosphorylation to yield NADP. This phos-
phorylated form acts as a hydrogen acceptor, giving rise 
to NADPH, a pivotal participant in antioxidant defense 
and synthetic metabolic pathways.

Emerging evidence suggests that strategies aimed at 
modulating NAD+ degradation pathways or enhanc-
ing NAD+ levels may offer therapeutic benefits for 
metabolic disorders and aging [2]. Maintaining the bal-
ance of NAD+ is essential for the optimal functioning of 
diverse metabolic tissues [198]. Changes or disruptions 
in metabolic states, such as high-fat diets, postpartum 
weight loss, and circadian rhythm disturbances [154, 
199–201], may lead to a decline in NAD+ levels, affect-
ing NAD+ -dependent cellular processes. Conversely, 
increasing cellular NAD+ levels through exercise, caloric 
restriction, and healthy dietary interventions have been 
shown to reduce stress and promote metabolic normali-
zation [202].

Knocking out PARP1 or CD38 or using PARP and 
CD38 inhibitors in mice leads to supraphysiological lev-
els of NAD+ in vivo. This change enhances metabolic 
rates in mice during high-fat diet feeding and aging, and 
glucose metabolism remains relatively normal, demon-
strating favorable effects in preventing obesity [188, 203, 
204]. In mice subjected to a high-fat diet, reduced expres-
sion of NAMPT, a key enzyme in the NAD+ salvage path-
way, leads to decreased activity in this pathway, which 
may be a potential mechanism underlying the decline 
in NAD+ levels during obesity. Additionally, in mice 
with adipocyte-specific NAMPT deficiency, NAD+ lev-
els decrease, insulin resistance increases, and metabolic 
dysfunction worsens in adipose tissue [205], further sup-
porting the significance of NAD + homeostasis in normal 
metabolic activities. The longevity protein SIRT2 has 
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been found to promote lifespan in an NAD+ -depend-
ent manner [177, 206]. Higher NAD+ levels also enhance 
the activity of nuclear SIRT1 and mitochondrial SIRT3, 
thereby regulating mitochondrial function and prevent-
ing diet-induced metabolic disorders [207, 208].

Inflammation and immunity
The relationship between chronic inflammation, immune 
cells, and metabolic cells is complex [209]. Targeting 
macrophage immune metabolic pathways by modulat-
ing NAD+ biosynthesis or degradation is of significant 
importance in regulating the inflammatory state and 
alleviating diseases [210]. Recent studies have indicated 
that NAD+ is a crucial regulatory factor for macrophage 
function, and pro-inflammatory M1-like macrophages 
may serve as the primary source of pro-inflammatory 
cytokines in aging tissues. Enhanced CD38 expression 
in macrophages leads to increased NAD + consump-
tion, resulting in pro-inflammatory (M1) macrophage 
polarization. Blocking NAMPT can impede glycolytic 
switching in M1 macrophages, limit pro-inflammatory 
responses in  vitro, and reduce systemic inflammation 
in vivo. Conversely, increased NAMPT function leading 
to elevated NAD + levels promotes anti-inflammatory 
(M2) macrophage polarization [112].

During the aging process, elevated CD38 expression 
and increased NADase activity in the liver and adipose 
tissues contribute to declining NAD + levels and accu-
mulation of pro-inflammatory M1-like macrophages 
[111, 211]. Impaired de novo NAD + synthesis in aging 
macrophages also affects their functionality during aging 
[212]. The enhanced expression of pro-inflammatory 
cytokines may drive a vicious cycle of inflammation, 
exacerbating tissue and DNA damage, and further acti-
vating major NAD + consumers such as CD38 and PARP, 
accelerating age-related physiological decline.

On the other hand, NAD + has been implicated in 
inducing cell death in specific T cell subsets [213], and it 
can also influence T cell polarization [214, 215], showing 
the dual role of NAD + in immune regulation. The pre-
cise role of NAD + in adaptive immune function remains 
unclear and requires further investigation.

DNA repair, transcriptional regulation and epigenetics
As discussed in the section “Degradation of NAD + ” 
above, the PARP protein family, a crucial NAD + con-
sumer, plays a central role in DNA repair and genome 
integrity. PARP accumulates at sites of single-strand 
breaks in cellular DNA and initiates the DNA repair 
process by utilizing NAD + for auto-ADP-ribosylation. 
Therefore, PARP is also considered a major consumer of 
NAD + during the aging process. Overactivation of PARP 
can be observed during aging or after DNA damage 

[216, 217], and this excessive activation may contribute 
to age-dependent NAD + depletion. Pharmacological 
inhibition or genetic deficiency of PARP1 prevents the 
decline in NAD + levels during aging and nutrient stress 
[217, 218]. NADP, acting as an endogenous inhibitor of 
PARP in mammalian cells, has been shown to be a nega-
tive regulator of PARylation and DNA damage repair in 
cancer cells [219]. Supplementing NAD + precursors can 
reduce DNA damage observed in hippocampal neurons 
of Alzheimer’s disease mouse models [220]. Apart from 
its role in DNA repair, PARP also functions as a chroma-
tin modifier, a co-regulator of DNA-binding transcrip-
tion factors, and a regulator of DNA methylation during 
the process of protein transcription [221–224]. Striking a 
balance between promoting and inhibiting PARP activity 
to achieve DNA repair and protein transcription regula-
tion is crucial for inhibiting aging.

The sirtuin enzyme family, as another major 
NAD + consumer, is not only involved in DNA damage 
repair processes but also associated with epigenetic mod-
ifications related to aging. Sirtuins prevent DNA dam-
age by inhibiting ROS production in mitochondria and 
activating ROS scavenging enzymes [225, 226]. They also 
promote DNA damage repair through mechanisms such 
as PARP activation [227], glutamine anaplerosis [228], 
and homologous recombination-mediated double-strand 
DNA break repair [229, 230]. The most notable role of 
sirtuins in epigenetics is their deacetylation function 
on histones. Deacetylation of histones H4K16, H3K9, 
and H3K56 by sirtuins contributes to lifespan extension 
[231–233]. Sirtuins can also activate histone methyltrans-
ferases and promote histone methylation processes [234].

Cellular senescence
As NAD + levels decline, senescent cells continue to 
accumulate in aging tissues. However, there have been 
no studies to establish a direct relationship between 
the accumulation of inflammatory senescent cells 
and NAD + levels during the aging process. The spe-
cific mechanism by which NAD + influences cellular 
aging remains unclear. Some studies have reported that 
NAD + levels affect the aging-related secretory phe-
notype (SASP) of senescent cells [235]. Supplementa-
tion with NAD + precursor substances enhances SASP, 
leading to increased chronic inflammation. CD38 
is considered the primary enzyme responsible for 
NAD + consumption [188, 204], causing NAD + levels 
to decline during aging. As age increases, CD38 levels 
also rise, although the underlying mechanism is not well 
understood.

It has been observed that senescent cells and their 
SASPs activate CD38 expression in macrophages, pro-
moting CD38-dependent NADase activity [111, 211]. 
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Moreover, CD38 expression is increased in macrophages 
co-cultured with senescent cells or exposed to condi-
tioned medium [112], suggesting that macrophages may 
represent the primary cell population responding to 
SASP with reduced NAD + levels. Another study revealed 
that cells with dysfunctional mitochondria initiate pro-
inflammatory programs by secreting pro-inflammatory 
cytokines. However, supplementation with NAD + pre-
cursors partially ameliorates this situation, in part by 
reducing inflammation and the burden of senescent cells 
[127].

Regulatory mechanism of NAD + metabolism 
in ovarian aging
Modifying the properties of enzymes involved 
in NAD + biosynthesis or degradation
In aging mouse oocytes, the mRNA expression levels of 
enzymes related to NAD + biosynthesis, such as NAMPT, 
NaPRT, Nrk1/2, and NMNAT1/3, show no significant 
changes compared to young oocytes. However, the 
mRNA and protein expression levels of NMNAT2 sig-
nificantly decrease [236]. Further investigations revealed 
that knocking down NMNAT2 in oocytes leads to a 
reduction in NAD + levels, disrupts the assembly of the 
meiotic spindle, and perturbs metabolic activities. Rescu-
ing the aging phenotype of oocytes in which NMNAT2 
is knocked down through SIRT1 overexpression sug-
gests that NMNAT2 may regulate the oxidative-redox 
homeostasis of aging oocytes by modulating NAD + lev-
els, thereby suppressing the aging phenotype of oocytes. 
Additionally, NMNAT2 downregulation can protect cells 
from p53-dependent cell death in response to DNA dam-
age [237].

Sirtuins, PARPs, and cADPR are the major NAD + -con-
suming enzymes in cells. Sirtuins have been shown to 
impact oocyte quality by modulating redox states. In 
mouse oocytes, the expression of all sirtuins is observed, 
and their levels gradually decrease until the blastocyst 
stage. Studies have reported that SIRT1 in GV oocytes 
can counteract oxidative stress through the Fox3-MnSod 
axis under in  vitro culture conditions [238]. Inhibit-
ing SIRT1 activity in in vitro-cultured oocytes increases 
the likelihood of spindle and chromosomal abnormali-
ties. SIRT1, FOXO3a, and NRF-1 may form a complex 
on the SIRT6 promoter, collectively participating in the 
regulation of ovarian follicle development [239]. P53 
protein is expressed in arrested follicles, and SIRT1 can 
regulate p53 acetylation and p53-dependent apoptosis. 
SIRT1 activation leads to a reduction in p53 expression, 
potentially preserving oocytes that would otherwise be 
lost [240, 241]. Oocyte-specific overexpression of SIRT1 
in mice continuously activates FOXO3a and suppresses 
mTOR, resulting in increased ovarian reserves, extended 

ovarian lifespan, and enhanced reproductive capac-
ity [242]. Epigenetic inhibitors or RNAi targeting SIRT1 
reduce oocyte survival by lowering H4K16ac levels, 
implying a connection between SIRT1 suppression and 
the establishment of oocyte follicle development [243]. 
SIRT3, a mitochondrial sirtuin [244], exhibits reduced 
expression in aging ovaries, leading to mitochondrial 
dysfunction and abnormal spindle assembly. Studies have 
reported that SIRT3 inactivation in in vitro fertilized and 
cultured embryos increases mitochondrial ROS produc-
tion, subsequently upregulating p53, resulting in devel-
opmental arrest [245]. This indicates a protective role of 
SIRT3 against oxidative stress-induced developmental 
arrest in preimplantation embryos cultured in vitro.

PARPs maintain chromosome stability during meio-
sis and play a crucial role in DNA repair [246]. While 
there is literature suggesting that regulating ovarian 
NAD + metabolism can reduce DNA damage and main-
tain genome stability [39, 40, 247], the specific role and 
mechanisms of PARPs in this context remain unclear. 
CD38, a representative enzyme for cADPR, can influ-
ence cellular calcium signaling, ROS production, and 
apoptosis. CD38 is not expressed in ovarian follicles but 
is mainly present in ovarian immune cells, showing an 
age-dependent increase in expression. CD38 deficiency 
results in increased NAD + levels in the ovaries, reduced 
NAM and ADPR levels, and positive regulation of ovar-
ian NAD + metabolism. CD38 deficiency enhances ovar-
ian reserves and reproductive capacity in young female 
animals, and it can alleviate ovarian inflammation in 
aging animals by reducing multinucleated macrophage 
giant cells postreproduction. These beneficial changes 
are associated with increased ovarian NAD + levels [248] 
(Fig. 3).

Supplementing NAD + precursors
In the oocytes of aging mice, protein acetylation lev-
els are abnormally regulated. Sirtuins, a family of 
NAD + -dependent class III histone deacetylases, also 
target many nonhistone substrates. NAM is a prod-
uct of NAD + -dependent enzymes such as sirtuins, 
PARPs, and CD38, as well as a precursor for NMN and 
NAD + synthesis. NAM supplementation can increase 
cellular NAD + levels and noncompetitively inhibit the 
deacetylase activity of sirtuins. Currently, NAM is known 
to inhibit the activity of SIRT1 and SIRT2. SIRT1 regu-
lates p53 acetylation and p53-dependent apoptosis in 
response to DNA damage and oxidative stress [249]. 
SIRT2 plays a role in microtubule protein deacetylation 
[250]. Compared to class I and II histone deacetylase 
inhibitors, NAM can regulate the acetylation and dea-
cetylation of α-tubulin proteins in aging oocytes at lower 
levels, significantly inhibiting the generation of abnormal 
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microtubule structures during aging and affecting aging-
related phenotypes associated with oocyte maturation 
[251].

Furthermore, NAM treatment significantly reduces 
the efficiency of GVBD, which produces similar effects 
to the use of SIRT2-specific inhibitors. However, subse-
quent events during meiosis I, including spindle assembly 
and chromosome alignment, remain unaffected. Oocytes 

treated with NAM show high expression of the anaphase-
promoting complex-Cdc20 during meiosis I exit, which 
is associated with a decrease in cyclin B1 levels and an 
increase in inhibitory phosphorylation of Cdk1, expected 
to lead to Cdk1 inactivation and establish a mid-meiotic 
arrest in meiosis II [252]. Higher concentrations of NMN 
result in beneficial effects rather than harmful effects in 
ovulated mouse eggs [251] (Fig. 3).

Fig. 3 Mechanism of NAD + metabolism in ovarian aging. Modulating the properties of enzymes involved in NAD + biosynthesis or degradation, 
providing NAD + precursors, and altering lifestyle collectively govern cellular NAD + metabolism. In the context of ovarian aging, NAD + metabolism 
predominantly exerts a beneficial influence on granulosa cells, oocytes, and embryonic development through alterations in the redox state 
and the activities of NAD + -dependent enzymes. This ultimately manifests as the reversal of ovarian aging
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NMN is a product of the NAMPT reaction and a cru-
cial intermediate in NAD + homeostasis. Supplement-
ing NMN in mice can increase NAD + levels, reverse the 
aging phenotype of oocytes in aging mice, and mitigate 
the adverse effects of aging on development when NMN 
is supplemented in embryo culture medium [8]. How-
ever, the exact mechanisms of action remain unclear. 
SIRT2, through deacetylation and stabilization of BubR1, 
plays a role in maintaining microtubule-kinetochore 
attachments, ensuring chromosome separation fidel-
ity. The benefits of NMN for oocytes in aging animals 
are largely achieved through overexpression of SIRT2. 
Supplementing NMN can also enhance the fertilization 
capacity of oocytes by maintaining the dynamics of the 
cortical granule component ovastacin [39]. Long-term 
NMN treatment upregulates the expression of PGC-1α, 
a protein related to mitochondrial function, to a certain 
extent, reversing damage to granulosa cells in ovarian fol-
licles [253].

Research has shown that NR supplementation can 
increase NAD + levels in mouse ovarian cells, reversing 
the ovarian aging phenotype. NR significantly upregulates 
the expression of genes related to mitochondrial dynam-
ics, such as OPA1, MFN1/2, DRP1, and FIS1, which 
decrease with ovarian aging. Intermediate metabolites 
involved in energy metabolism, such as citrate, isocitrate, 
D-fructose1, and NAD + , are also upregulated, leading 
to increased ATP production. Mitochondrial biogen-
esis increases, and the expression of the mitochondrial 
autophagy-related genes PINK and LC3 is upregulated. 
NR treatment enhances mitochondrial autophagy and 
improves mitochondrial dynamics and mitochondrial 
function in aging oocytes, ultimately improving oocyte 
quality [40]. Another study reported that NR treatment 
can mitigate the decline in oocyte quality postovulation 
and lead to better clinical outcomes in assisted repro-
ductive technology. In this study, the mRNA expression 
of core proteins of the mitochondrial oxidative phos-
phorylation chain was studied, and it was found that NR 
treatment increases the expression of Sdhb, Uqcrc2, and 
Atp5a1 [247], which helps prevent age-related mitochon-
drial dysfunction (Fig. 3).

Therapeutic potential of NAD + in ovarian aging
Pharmacological NAD + boosting
The levels of NAD + in the body are regulated by a deli-
cate balance between its synthesis and degradation, 
which is influenced by the aging process [2, 254–257]. 
The concentration of NAD + in various tissues can be 
modified through diet, lifestyle, and pharmacological 
interventions, potentially yielding therapeutic benefits 
in certain cases. Currently, there are three main strate-
gies for increasing NAD + levels through pharmacology: 

1) improving the activity of enzymes involved in 
NAD + biosynthesis, particularly those that are critical in 
the rate-limiting steps of both the de novo synthesis and 
salvage pathways, such as α-amino-β-carboxymuconate-
ε-semialdehyde decarboxylase (ACMSD) and NAMPT,2) 
inhibiting enzymes responsible for NAD + degradation, 
such as PARPs and CD38; and 3) supplementing the 
diet with NAD + precursors to support NAD + synthe-
sis through the salvage pathway. Studies conducted in 
C. elegans [217], flies [258], rodents [259], and humans 
[260, 261] have revealed the feasibility of increasing 
NAD + levels by supplying NAD + precursors (Fig. 4).

Characteristics of NAD + precursors
To date, the identified NAD precursors include trypto-
phan, NA, NAM, NR, and NMN. These precursors have 
garnered significant attention as NAD + precursors due 
to their role in NAD + synthesis, which has been increas-
ingly recognized [260, 262, 263]. Published research has 
not yet identified any specific preference of ovarian tissue 
for any of the mentioned NAD precursors. NA and NAM 
have a long history of being linked to pellagra [264], a dis-
ease that is preventable by consuming a diet rich in these 
precursors [265]. Recently, NR and NMN have gained 
attention as NAD + precursors due to their comparatively 
lower side effects compared to NA and NAM. These 
precursors enter cells through various mechanisms: NA 
directly passes through cells with the help of membrane 
carriers (SLC5A8 or SLC22A13) [266, 267], while NR 
enters cells through equilibrative nucleoside transport-
ers (ENTs). NAM can enter cells either directly or can 
be converted into NMN via NAMPT. NMN enters cells 
through specific transporters (the Slc12a8 gene) [268], 
by conversion into NAM or NR via CD38 or CD73, or 
through ENTs [159, 188].

In terms of pharmacokinetics, NAD + precursors 
exhibit distinct properties. Tryptophan, NAM, and NA 
in plasma present the highest concentrations, surpass-
ing 0.1  μM, with the concentration of NAM being ten 
times higher than that of NA in plasma. Moreover, under 
basal conditions, NR and NMN are almost nonexistent 
in plasma. That is, the liver is the main provider of cir-
culating NAM, accounting for more than 95% of trypto-
phan-NAM production. The absorption, production, and 
consumption of NAM and NAD vary significantly among 
organs, correlating with the expression of enzymes 
involved in NAD synthesis and consumption. Admin-
istration of high doses of NA leads to elevated levels of 
NAM, which possesses a longer half-life than NA [269]. 
Although NAM has a stronger ability to raise NAD + lev-
els, excessive NAM concentrations can result in adverse 
effects, such as nausea and vomiting [270], and may also 
negatively impact NAD + -consuming enzymes such as 
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PARPs and sirtuins [261]. Clinical studies have shown 
the effectiveness of NA in raising blood and muscle 
NAD + levels, thereby alleviating systemic NAD + defi-
ciency in patients with mitochondrial myopathy and 
improving muscle performance [271].

Likewise, oral intake of NAM can quickly elevate both 
NAM and NAD + levels in the blood [272]. Research 
has also shown that NMN can significantly increase 
NAD + levels in peripheral tissues and can even trav-
erse the blood–brain barrier to increase NAD + in the 
brain [273, 274]. Upon oral administration, NMN is rap-
idly absorbed into the bloodstream from the intestine 
within a short span of 2–3  min, swiftly distributing to 
diverse tissues through circulation within 15  min. After 
15 min, the plasma NMN level returns to baseline, while 
increased concentrations of NAD + can be detected in 
the liver, skeletal muscle, and cerebral cortex [275]. Addi-
tionally, clinical trials have demonstrated that a single 
oral dose of NMN can substantially increase the levels of 
NMN and NAD + metabolites in the plasma [276]. Simi-
larly, oral intake of NR increases NAD + levels in blood 

cells, displaying 2–3 times greater potency at raising 
ADPR compared to NAM [261].

NAD + boosting in vitro
Notably, the potential benefits of supplementation with 
NAD + precursors in preventing and treating age-related 
diseases have gained increasing attention. Neverthe-
less, the impact of NAD + precursor supplementation 
on ovarian aging remains insufficiently investigated. A 
few studies have explored the role of NAD + precursors 
in ovarian aging (Table 1). For instance, a study in 2013 
demonstrated that supplying ovulated aging oocytes with 
NAM could inhibit the formation of abnormal spindles 
and reduce cell fragmentation [251], implying a poten-
tial delay in the aging process. Furthermore, boosting 
NAD + biosynthesis with NA was found to prevent oxi-
dative stress and meiotic defects in old oocytes, effec-
tively delaying the aging process of oocytes in aged mice 
[236]. However, conflicting results have been observed 
in other studies. Specifically, one study found that NAM 
disrupted the regulation of Cdk1 in ovulated oocytes, 

Fig. 4 Therapeutic potential of NAD + in ovarian aging. Previous studies conducted in multiple model animals and humans have revealed 
the feasibility of increasing NAD + levels by supplying NAD + precursors, and the NAD + metabolomic pathway can enhance mitochondrial 
function, enhance autophagy levels, and maintain protein homeostasis in mitochondria and lysosomes, consequently decelerating the progression 
of ovarian aging
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impairing entry into meiosis I and the establishment of 
metaphase II arrest [252]. A recent study revealed the 
efficacy of NR supplementation in maintaining the qual-
ity of postovulatory oocytes [247]. NR effectively curbs 
the decline in NAD + levels, counteracts mitochondrial 
dysfunction, preserves spindle and chromosome struc-
ture, and decreases ROS levels and DNA damage, thereby 
improving oocyte quality and embryonic development 
potential and potentially enhancing the success rate of 
assisted reproductive technology. The precise molecular 
mechanism underlying the numerous benefits of NR sup-
plementation remains unclear. Similarly, a separate study 
found that NMN treatment in embryo culture reverses 
the negative impact of aging on development [8].

NAD + boosting in vivo
The impact of NAD + precursor supplementation on 
ovarian aging has been explored in  vivo (Table  1). The 
results have shown that NMN supplementation in  vivo 
can enhance the oocyte quality, ovulation rate, and fer-
tility in aged mice [8]. Studies have found that a 4-week 
preovulation treatment of NMN can restore oocyte spin-
dle assembly and reduce the occurrence of aneuploidy, 
improving oocyte quality. Additionally, the mechanisms 
underlying the improvement in the ovulation rate with 
NMN treatment may be related to the NAD + metabo-
lome and the effects of other tissues on follicle develop-
ment. Low-dose NMN supplementation has been found 
to increase the pregnancy rate and the number of live 
births in aged mice, suggesting an optimal concentration 
for promoting fertility. Furthermore, NMN treatment 
can also ensure normal dynamics of cortical granules, 
improve sperm binding, and enhance the fertilization 
capacity of aged oocytes [39]. The benefits of NMN treat-
ment are mainly attributed to the enhancement of energy 
metabolism in oocytes, although a similar effect was 
observed in aged mice with transgenic overexpression of 
SIRT2. Nevertheless, the results from SIRT2 knockout 
mice indicate that SIRT2 protein may not play a crucial 
role in oocyte function [277, 278]. Consequently, fur-
ther research is necessary to ascertain the participation 
of other members of the sirtuin family in mediating the 
effects of NMN.

A separate study observed similar outcomes when uti-
lizing NMN to boost NAD + biosynthesis in aged mice 
[39]. The research team discovered that NMN supple-
mentation led to an increase in antral follicles and ovu-
lated oocytes while decreasing the occurrence of mature 
oocytes with fragmentation. NMN treatment improved 
the maturation of the nucleus and cytoplasm in aged 
oocytes, thus boosting the maturation rate of oocytes. 
Through the implementation of single-cell transcrip-
tome profiling, the researchers investigated the potential 

effectors of NMN and discovered that the impact of 
NMN on aged oocytes may be due to its effects on mito-
chondrial function. Specifically, the benefits of NMN 
appear to stem from the restoration of mitochondrial 
function, reduction in the accumulation of ROS, and 
suppression of apoptosis (Fig.  4). Some studies sug-
gest that administering NMN to 40-week-old mice for 
20  weeks can enhance mitochondrial function, enhance 
autophagy levels, and maintain protein homeostasis in 
mitochondria and lysosomes, consequently decelerat-
ing the progression of ovarian aging [253]. Additionally, 
prolonged supplementation with NMN was also found to 
lower the expression of the ovarian aging marker P16 and 
increase the expression levels of mitochondrial function-
related proteins. Furthermore, supplementation with 
NR was found to restore mitochondrial function and 
enhance mitochondrial energy metabolism, leading to 
improved ovarian reserve, increased ovulation potential, 
and a higher live-birth rate in aged mice [40, 279]. How-
ever, currently, there is a lack of available literature that 
describes clinical studies investigating the use of NAD 
precursors in research on ovarian aging.

Therapeutic potential of NAD + in clinical trials 
on aging‑related conditions
Most preclinical rodent studies have revealed the prom-
ising translational potential of NAD + boosting therapy. 
Some clinical trials have already investigated the use of 
NAD + precursors for aging-related conditions (Table 2). 
The NAD + precursors used in clinical trials are mainly 
NR and NMN [276, 280], neither of which has been 
reported to cause adverse reactions [281], while the use 
of NA can cause flushing and pain [282]. Clinical tri-
als evaluating the pharmacokinetics and toxicology of 
NAD + precursors have yielded preliminary evidence 
supporting the safety of NAD + boosting therapy [283–
286]. Nonetheless, translating the promising therapeutic 
effects observed in preclinical animal models to humans 
has proven challenging due to the mild and occasion-
ally contradictory nature of the beneficial effects of 
NAD + precursors.

Positive results have been seen in clinical studies, 
indicating that NMN supplementation can increase 
muscle insulin sensitivity in overweight or obese predia-
betic women, thereby improving insulin signaling and 
remodeling [286]. In another clinical investigation of the 
antiaging effects of NMN, it was observed that NMN 
can significantly increase NAD levels in the serum of 
healthy subjects. Furthermore, NMN supplementation 
leads to increased insulin sensitivity, as evidenced by the 
substantially reduced HOMA scores compared to those 
of the control group, highlighting the antiaging effects 
of NMN [287]. However, a clinical study employing a 
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dose-dependent regimen showed that NMN supple-
mentation did not impact insulin sensitivity, although 
statistically significant improvements were observed in 
the health status of the participants [285]. Studies have 
reported that short-term use of NR has some beneficial 
effects on healthy older adults [13]. Moreover, long-term 
supplementation with the NAD + precursor NR exhibits 
good tolerability and effectively stimulates NAD metabo-
lism in healthy middle-aged and older adults, resulting 
in reduced levels of circulating inflammatory cytokines 
[260, 284]. Some studies conducted with older adults 
have indicated that supplementation with NAD + pre-
cursors through L-tryptophan, niacin, and nicotinamide 
does not improve mitochondrial or skeletal muscle func-
tion [283]. Additionally, supplementing NR in older obese 
men has little effect [280, 288]. Interestingly, a study has 
reported that NA can rectify systemic NAD deficiency, 
leading to enhanced muscle performance in patients with 
mitochondrial myopathy [271].

The reasons behind the absence of beneficial effects 
in human trials of NAD + boosting therapy thus remain 
unclear. This could potentially be attributed to the inabil-
ity of NAD + precursors to increase NAD levels in spe-
cific tissues of the human body [260, 263, 289]. Moreover, 
the duration of the studies may have been inadequate 
to attain clinical benefits, and the experimental designs 
primarily concentrated on healthy subjects with normal 
baseline NAD levels. Therefore, further human clinical 
trials are imperative to ascertain suitable dosage regi-
mens, treatment periods, and long-term toxicological 
outcomes. These trials should account for participant 
diversity to effectively tackle the translational challenges 
associated with NAD + promotion strategies.

Perspective
The significance of NAD + in various disease models, 
including cancer, neurodegeneration, organ disease, 
and aging, has gained widespread recognition and has 
received extensive research attention [7, 198, 260, 290, 
291]. This is attributed to the essential role of NAD + as 
a cofactor in redox reactions, as well as its involvement 
in vital processes such as energy metabolism, cellular 
homeostasis, posttranslational modification, epigenetic 
changes, and RNA stability [144, 292–294]. Studies on 
NAD + boosting by supplementing NAD + precursors in 
the context of ovarian aging are gaining momentum. Ani-
mal models of ovarian aging have demonstrated that sup-
plementation with NAD + precursors improves oocyte 
quality, alleviates ovarian aging, and enhances fertility.

However, the molecular mechanism behind 
NAD + precursors remains unclear. Numerous ques-
tions have arisen, encompassing the transportation of 
NAD + and its precursors to ovarian cells and organelles, 

the preference of ovarian cells for certain NAD + pre-
cursors, the effect of specific NAD + metabolic path-
ways on NAD + flux in healthy and aging ovaries, and 
the repair mechanism for toxic metabolites produced by 
NAD + metabolism. Currently, the beneficial effects of 
NAD + boosting therapy in human trials are highly lim-
ited, leaving numerous questions unanswered. Notwith-
standing these uncertainties, although much research 
is required to comprehensively elucidate the biologi-
cal and therapeutic potential of NAD + in this context, 
NAD + boosting therapy still holds promise for address-
ing ovarian aging.
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