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Background
The concept of “inflammaging” introduced by Franceschi 
et al., (2000), was related to declining ability of immune 
system to cope with various external stressors, as well 
as accelerating pro-inflammatory status. They proposed 
that continuous exposure to internal and external stress-
ors led to chronic macrophage activation, naïve immune 
cells exhaustion, decreased in the T-cell repertoire and 
affected other immune cells. These continuous disrup-
tions over the time resulting a major change and depleted 
the ability of immune system to response against stress-
ors, as well as escalating pro-inflammatory response. 
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Abstract
Background  Inflammaging, the characteristics of immunosenescence, characterized by continuous chronic 
inflammation that could not be resolved. It is not only affect older people but can also occur in young individuals, 
especially those suffering from chronic inflammatory conditions such as autoimmune disease, malignancy, or chronic 
infection. This condition led to altered immune function and as consequent immune function is reduced. Detection 
of immunosenescence has been done by examining the immune risk profile (IRP), which uses flow cytometry. These 
tests are not always available in health facilities, especially in developing countries and require fresh whole blood 
samples. Therefore, it is necessary to find biomarkers that can be tested using stored serum to make it easier to refer 
to the examination. Here we proposed an insight for soluble biomarkers which represented immune cells activities 
and exhaustion, namely sCD163, sCD28, sCD80, and sCTLA-4. Those markers were reported to be elevated in chronic 
diseases that caused early aging and easily detected from serum samples using ELISA method, unlike IRP. Therefore, 
we conclude these soluble markers are beneficial to predict pathological condition of immunosenescence.

Aim To identify soluble biomarkers that could replace IRP for detecting immunosenescence.

Conclusion Soluble costimulatory molecule suchsCD163, sCD28, sCD80, and sCTLA-4 are potential biomarkers for 
detecting immunosenescence.
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These conditions define the characteristic of immunose-
nescence [1].

Immunosenescence was commonly identified with 
immune risk profile (IRP). The concept of IRP has 
originated from the OCTO/NONA study conducted 
in Sweden in individuals over 85 years of age. IRP is an 
immunosenescence marker characterized by the pres-
ence of 100% cytomegalovirus (CMV) infection and a 
CD4/CD8 ratio < 1 owing to the accumulation of differ-
entiated T cells, particularly CD27−CD28−CD57−CD8+ 
T cells. These are the antigen-specific T cells for CMV 
[2–4]. Furthermore, IRP is characterized by a lower 
number of CD8+CD45RA+ cells and higher number of 
CD8+CD45RO+ T cells [3, 5, 6].

An inverted CD4/CD8 ratio (< 1) is associated with 
an increase in the number of activated, senescent, and 
exhausted CD4+ T cells and CD8+ T cells, as well as a 
shift in naïve to memory cells [7]. In addition, an inverted 
CD4/CD8 ratio indicates accumulation of CD8+ T cells 
that have differentiated into the late phase, a low prolifer-
ative response of T cells, and a low number of B cells [5]. 
An inverted CD4/CD8 ratio has been linked with prema-
ture immunosenescence in individuals of all ages, includ-
ing children and young adults infected with Human 
Immunodeficiency Virus (HIV), patients with myocardial 
infarction, and patients under physical and psychological 
stress. The prevalence of an inverted CD4/CD8 ratio is 
8% between the age of 20 and 59 and up to 16% between 
the age of 60 and 94. The inverted CD4/CD8 ratio cor-
relates with an increased mortality and persistent viral 
infection [8].

In addition to the inverted CD4/CD8 ratio, one of the 
IRPs is a decrease in T-cells with CD28 receptors. CD28 
is a costimulatory molecule responsible for activating T 
cells. However, during activation, some T cells lose the 
CD28 molecule and become CD28− T cells. These CD28− 
T cells act as antigen-recognizing cells and are highly dif-
ferentiated. During normal aging, CD8+CD28− T cells 
are accumulated, which is likely due to the continuous 
exposure to various antigens present through lifetime 
[9]. A study by Yadav et al. found that CD4+CD28− T 
cells in patients with chronic kidney disease (CKD) 
were correlated with an increased occurrence of athero-
sclerosis [10]. CD4+CD28− T cells also show increased 
cytotoxic and inflammatory activity. Téo et al. showed 
that CD4+CD28− T cells participate in the pathogen-
esis of atherosclerosis and their number also increases in 
patients with acute coronary syndrome (ACS) [11].

An increase in memory T cells (CD4+CD45RO+ T 
cells and CD8+CD45RO+ T cells) and a decrease in naïve 
T cells (CD4+CD45RA+ T cells and CD8+CD45RA+ T 
cells) is observed during immunosenescence. Memory 
T cells increase with age and are more abundant in tis-
sues [12]. Naïve T cells (CD45RA+) express CD27, CD28, 

and CCR7 as they leave the thymus. When exposed to 
antigens, naïve T cells differentiate into central memory 
T cells (CD45RO+ T cells) [13]. Involution of the thy-
mus leads to a decrease in naïve T cells. These conditions 
make geriatric population more susceptible to new anti-
gens [14].

In addition to these parameters, IRP is also character-
ized by the presence of CMV infection. CMV mainly 
survives in myeloid cells but can sometimes be found in 
other cells. When CMV infection occurs, containment of 
the wider infection is a priority for the immune system; 
however, complete elimination is never achieved. A study 
found changes in CD8+ T cells that were very similar to 
senescence but occurred as a result of CMV infection 
[15]. The CMV seropositive parameter can predict mor-
tality in the geriatric population. These findings indicate 
the presence of persistent CMV as a chronic antigen 
stressor, which is a major contributor to immunosenes-
cence and mortality [15, 16].

Although many IRPs have been identified, which can 
be used for the detection of immunosenescence, these 
markers are cell surface receptors that have to be exam-
ined using flow cytometry, which required a fresh blood 
sample. The required condition is difficult to accommo-
date especially in developing countries, where most of 
the healthcare facilities lack of advance instruments, such 
as flow cytometry. As a result, immunosenescence mark-
ers in the dissolved form are required. Markers in the 
dissolved form are more stable and could be measured 
from stored serum. Other promising soluble marker can-
didates for accelerated aging, such as soluble urokinase 
plasminogen activator receptor (suPAR) was not easily 
detected, as it was present in low concentration in the 
serum [17]. Other soluble markers such as IL-6, TNF-α 
and IFN-γ were also commonly used as biomarkers for 
immunosenescence detection, however those markers 
were less specific as it can be also detected during acute 
inflammation [18–20].

This review focused on four different soluble markers, 
CD163, CD28, CD80 and CTLA-4, which were com-
monly known to have various functions related to mac-
rophage [21–23] and T cells activation [24–26], which 
play a key role in immunosenescence. Characterization 
of CD163 and CD80 biomarkers, which determine the 
macrophage polarization, had been used as to monitor 
inflammaging [27].

While CD28 is linked to inflammaging as it is observed 
to be absent in elder people as well as age-related dis-
eases. The senescence is associated with an increase of 
CD28- memory T cell and decrease of naïve T cell popu-
lations, therefore the CD28 could be a good biomarker 
candidate of immunosenescence [28]. CD28- T cells are 
also known to have a short telomerase, as a consequence 
it will affect negatively on the immune checkpoint 
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inhibitory receptors, such as CTLA-4. Suppressive func-
tion of Treg was regulated by CTLA-4 receptor together 
with the co-stimulatory receptor CD28. Therefore, 
CTLA-4, together with PD-1, which regulate the T cells 
response, play important roles in maintaining the balance 
between stimulatory and inhibitory signals for immune 
responses against antigens [28, 29], thus determine the 
senescence status.

Moreover, the soluble markers mentioned above were 
easily detected using enzyme-linked immunosorbent 
assay (ELISA) method, as they were present in high con-
centration in the serum [30–33].

Soluble CD163
CD163 is a glycosylated membrane protein [23] 
expressed almost exclusively on all macrophages [21–23] 
and at least 10-30% of monocytes [34]. CD163 is a mem-
ber of the B scavenger receptor cysteine-rich (SRCR) 
family [22] and consists of 9 extracellular SRCR protein 
domains associated with the short transmembrane seg-
ment and short cytoplasmic tail. CD163 is located on 
chromosome 12p13 and consists of 17 exons [23]. CD163 
is also a scavenger hemoglobin (Hb) receptor involved in 
the endocytosis of the haptoglobin-Hb complex [21, 23]. 
It has other functions as well, including those related to 
erythroblast adhesion, immune sensing of the presence 
of bacteria, and bonding with TNF-like weak inducer of 
apoptosis (TWEAK) [23]. In vitro, CD163 expression is 
increased by the presence of glucocorticoids, IL-10 and 
IL-6 but not by IL-4 or IL-13, but not by IL-4 and IL-13 
[21, 23]. CD163 expression is reduced by the presence of 
tumors necrosis factor-alpha (TNF-α), interferon-gamma 

(IFN-γ), and chemokine CXCL4 (platelet factor 4). This 
suggests that CD163 is mainly expressed by M2 macro-
phages [23].

CD163 can be released (shedding) upon the action of 
cleaving enzyme TNF-α [35], resulting in a dissolved 
form known as soluble CD163 (sCD163) [23, 35]. The 
sCD163 level is negatively correlated with the level of 
membrane bound CD163 [35]. sCD163 has been detected 
in the plasma of healthy individuals at levels ranging 
from 0.73 to 4.69 mg/L, with a median of 1.87 mg/L [36]. 
Because its expression is limited to the monocyte line, 
sCD163 can be used as a specific marker of macrophage 
and monocyte activation [22, 35]. Furthermore, sCD163 
and non-membrane-bound products function similarly 
to cytokines in that they inhibit the activation and prolif-
eration of T lymphocytes [35], particularly CD4+ T cells 
[36]. The release of sCD163 by cleaving enzyme TNF-α 
corresponds to an increase in sCD163 levels in acute and 
chronic inflammatory diseases [35, 37] and hematologi-
cal diseases [35].

In vivo, the release of sCD163 occurred simultane-
ously with an increase in TNF-α response due to the 
presence of lipopolysaccharide (LPS) mediated by Toll-
like Receptors (TLR) 4 activation. Then, it is accompa-
nied by a sharp increase in sCD163 and TNF-α levels 
and positively correlated with the number and activity of 
monocytes or macrophages (Fig. 1) [23, 38]. In addition, 
sCD163 was released in the presence of oxidants and 
pro-inflammatory cytokines [39]. The half-life of sCD163 
is much longer than TNF-α and sCD163 levels remain 
elevated for 1–2 days [23, 40]. Levels of sCD163 can be 
affected by several factors such as increased CD163 

Fig. 1 Shedding of soluble CD163. Various inflammatory signals induce shedding of sCD163 in vitro. Shedding of sCD163 can be induced by TLR4 
activation or FcγR-crosslinking mediated by ADAM17/TACE. Half-life of sCD163 is longer than that of TNF-α. FcγR, Fc-gamma receptors; LPS, Lipopolysac-
charides; TACE/ADAM17, Tumor necrosis factor α-converting enzyme; TLR, Toll-like receptors; TNF, Tumor necrosis factor. Reprinted with permission from 
Reference: Møller, H. J. 2012. Soluble CD163. Scandinavian journal of clinical and laboratory investigation, 72, 1–13
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expression, increased shedding, and impaired clearance 
[23]. In healthy individuals, sCD163 levels were shown to 
have low individual variability with a value limit of ± 30% 
[35].

Various studies have been conducted to better under-
stand sCD163; however, research on sCD163 in the 
context of immunosenescence in geriatrics is lacking. 
Previous studies have shown that sCD163 is elevated in 
patients with HIV and is linked with the aging of CD8+ 
T cells in these patients. Researchers have discovered 
that sCD163 levels in patients with HIV were equivalent 
to those of 14.5 year older healthy individuals. Further-
more, an increase in sCD163 with age has been shown 
[41]. Other HIV-related studies have demonstrated a 
negative relationship between sCD163 levels and telo-
mere length. During HIV infection, telomere shorten-
ing occurs, which is a process associated with aging. 
Increased sCD163 in patients with HIV infection also 
correlates with the emergence of co-morbidities in the 
form of premature degenerative diseases such as cardio-
vascular and neurological diseases [42, 43]. This indicates 
a correlation between chronic immune system activation 
and increased sCD163 levels.

Hodowanec et al. found that sCD163 levels positively 
correlated with anti-CMV IgG antibody levels were 
positively correlated in patients with HIV infection [44]. 
Azanan et al. found an increase in sCD163 in pediatric 
patients with leukemia when compared with healthy 
children of the same age; sCD163 levels correlated with 
anti-CMV IgG antibodies in these patients [45]. Another 
study found an increase in sCD163 in patients with 
chronic Hepatitis C Virus (HCV) infection. sCD163 is 
also associated with increased mortality from heart dis-
ease, acute myocardial infarction, increased mortality, 
atherosclerosis, diabetes, and insulin resistance [46].

Various studies regarding sCD163 levels in serum 
and urine samples of various chronic diseases are listed 
in Table  1. In addition, Zhi et al. analyzed the role of 
sCD163 in asthma. According to their study, sCD163 
plays a role in the pathogenesis of asthma and can act 
as a potential marker as well as a target for therapy [47]. 
Meanwhile, the meta-analysis by Qian et al. suggested 
that sCD163 is correlated with the risk of mortality in 
cancer [48].

Based on Table  1, it can be concluded that sCD163 
levels, especially serum sCD163, correlate with various 
chronic inflammatory conditions arising due to infection, 
autoimmunity, or malignancy. Chronic inflammatory 
conditions are similar to inflammaging in immunosenes-
cence. However, to the best of our knowledge, no studies 
have reported the role of sCD163 in immunosenescence.

Soluble CD28
CD28 is a T cell surface receptor that strengthens the 
transcriptional effect of TCR and acts as a costimula-
tory receptor for naïve T cell activation [70]. CD28 is 
expressed in 95% CD4+ T cells and 50% human CD8+ 
T cells but number of CD28+ T cells decrease during 
aging and in the presence of CMV infection [71, 72]. 
CD28 can bind to receptors on antigen-presenting cells 
(APC), CD80 (B7-1), and CD86 (B7-2) for T cell acti-
vation (Fig.  2A and B). Binding of CD28 with its ligand 
also triggers anti-apoptosis, increases cytokine secretion, 
especially that of IL-2, increases cell adhesion, prevents 
the induction of T cell anergy, and triggers the forma-
tion of a germinal center [73]. CD28 deficiency leads to 
impaired T cell proliferation, changes in immunoglobulin 
class, germinal center formation, and impaired Th2 cell 
response [74, 75]. CD28 is abundant in naïve T cells but 
in highly differentiated T cells, number of CD28 signifi-
cantly decreased [9, 13]. T cell activation occurs through 
its binding with membrane-bound CD28, which is fol-
lowed by the shedding of membrane-bound CD28 in the 
plasma, referred to as soluble CD28 (sCD28). CD28 func-
tions in T cell regulation while being expressed on the 
cell surface as well as in its dissolved form [76].

Soluble CD28 originates from released surface mem-
brane receptors or alternative mRNA splicing (Fig.  2B) 
[31, 77]. However, recent studies using RT-PCR analysis 
have shown that in systemic lupus erythematosus (SLE) 
patients, an increase in sCD28 levels results from shed-
ding of membrane-bound CD28 [78]. This is consistent 
with a study by Sun et al., who assessed sCD28 levels 
in Graves’ disease and found that an increase in sCD28 
levels correlated with a decrease in membrane-bound 
CD28 [31]. In vitro, sCD28 stimulates T cell prolifera-
tion as well as IL-6 and TNF-secretion. In vivo, sCD28 
serves as a marker for increased CD28 expression on T 
cells, indicating APC and T cell activation. Furthermore, 
sCD28 can compete and interfere with the interaction of 
CD28 or CTLA-4 with B7 (Fig. 2F) [31]. sCD28 has been 
found to be elevated in a variety of autoimmune diseases, 
including SLE and rheumatoid arthritis (RA) [76, 79] as 
detailed in Table 2. In addition, elevated sCD28 levels are 
also associated with chronic inflammatory conditions 
such as malignancy, chronic infection, and metabolic dis-
orders (diabetes mellitus) (Table 2).

Based on Table 2, sCD28 plays a role in a variety of dis-
eases, particularly autoimmune disorders, malignancy, 
and chronic infections. There is a common pathogenesis 
in these three types of diseases in terms of chronic low-
grade inflammation, which corresponds to an inflam-
maging condition. As a result, the authors conclude that 
sCD28 plays a role in inflammaging, including immu-
nosenescence. A strong negative correlation also exists 
between sCD28 levels and number of CD28+ T cells. 
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This demonstrates that immune system activation causes 
CD28 to be shed into its soluble form. Therefore, in 
immunosenescence (which is associated with inflammag-
ing), an increase in sCD28 levels is likely to be observed.

Soluble CD80
CD80 is a costimulatory factor expressed on the surface 
of activated monocytes, B cells, and dendritic cells [99]. 
CD80 binds to CD28 to activate T cells (Fig. 2B). CD80 

expression is stimulated by APC; however, small amounts 
of CD80 are expressed on inactive monocytes. The solu-
ble form of CD80, soluble CD80 (sCD80), originates from 
spliced mRNA or the release of cell surface CD80 recep-
tor into the circulation [25]. The spliced form of sCD80 
is expressed by inactivated monocytes and B cells [99]. 
CD80 prevents programmed death-ligand-1 (PD-L1) 
mediated immune suppression and PD-1 in tumor cells. 
sCD80 has the same strong ability to bind PD-L1 as that 

Table 1 The role of sCD163 in various chronic diseases
Disease sCD163 level (specimen) Clinical Importance Ref
Atherosclerosis 2.469 (0.264–9.063) mg/L (plasma) Elevated in coronary atherosclerosis. [49]

Liver failure 808.6 ± 433.0 ng/mL
(serum)

Elevated in fulminant liver failure, positively correlated with 
prolonged prothrombin time and mortality.

[50]

Cirrhosis 4.5 mg/L
(plasma)

Elevated in cirrhosis and has positive correlation with Child-Pugh 
classification, also portal hypertension predictor marker.

[51]

5.77 mg/L
(plasma)

Elevated in cirrhosis that caused by Hepatitis C Virus (HCV) and 
correlated with other inflammatory markers.

[52]

Non-alcoholic fatty liver
disease (NAFLD)

2.5–3.9 mg/L
(plasma)

Liver fibrosis predictor. [53]

Type 2 Diabetes Mellitus 
(T2DM)

1.95 (0.63–6.97) mg/L
(serum)

Elevated in T2DM and has positive correlation with insulin 
resistance.

[54]

Obesity in chronic kidney 
disease (CKD) stage V

4.0 mg/L
(plasma)

Has positive correlation with increased fat mass and other inflam-
matory markers in CKD stage V.

[55]

HIV infection 2.89 (2.22–3.42) mg/L
(plasma)

Correlated with RNA viral load, risk for cardiovascular event 
(age, ethnic, body mass index, and HDL), also response to the 
treatment.

[56]

1343.0 ± 161.4 ng/mL
(plasma)

Correlated with neurocognitive disturbance. [43]

From 1.085 (828 − 1.480) to 792
(562–1.025) ng/ml (plasma)

Has negative correlation with anti-retroviral treatment. [57]

Leprosy 177.6 ± 62.18 ng/mL (serum) Positively correlated with disease severity. [58]

Visceral leishmaniasis 152.1 ± 67.86 ng/mL (serum) Positively correlated with disease severity. [58]

Autoimmune hepatitis 9.5 (3.3–28.8) mg/L
(plasma)

Has positive correlation with disease severity and disease activity, 
also with treatment response.

[59]

SLE 1581 ng/ml
(serum)

Diagnostic and disease activity marker for macrophage activation 
syndrome (MAS) in SLE.

[60]

483.7 ± 260.8 ng/mL
(serum)

Positively correlated with atherosclerosis plaque formation in SLE 
patients that have low cardiovascular event risk.

[61]

Lupus nephritis 67.04 ± 18.70 ng/mL
(serum)

Correlated with disease severity and poor prognostic indicator. [62]

114.01 pg/mg
(urine)

Marker for disease activity in lupus nephritis. [63]

2.91 ± 2.52 U/mL/mg/dL
(urine)

Disease activity marker for lupus nephritis and correlated with 
clinical manifestation, conventional laboratory test (urea and 
creatinine), also renal pathology.

[64]

22.02 (pg/mL)/(mg/dL)
(urine)

Can distinguish lupus nephritis patients from SLE without 
nephritis also has strong correlation with activity index of renal 
pathology.

[65]

Glomerulonephritis 3.9 µg/ mmol
(urine)

Stable marker for glomerulonephritis and can be used outside 
health facility also has correlation with treatment response.

[66]

Systemic sclerosis 529 ± 251 ng/mL
(serum)

Potential marker for systemic sclerosis. [67]

984 ± 420 ng/mL
(serum)

Elevated in systemic sclerosis and negatively correlated with risk 
for digital ulcer but positively correlated with more severe skin 
manifestation.

[68]

Gastric cancer 0.291–1.76 µg/mL
(serum)

Diagnostic and prognostic marker in gastric cancer. [69]
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Disease sCD28 level
(specimen)

Clinical importance Ref

RA 1.2 ± 1 ng/mL
(serum)

Has correlation with CD28 IVS3 + 17T/C allele polymor-
phism in T cell thus increased risk development to RA 
and has correlation with T/T genotype in RA patients.

[80]

NA
(serum)

Elevated in RA, correlated with treatment response but 
not with disease activity.

[81]

8.8 ng/mL
[7.9–11.1] (chronic RA) and 10.1 ng/mL [8.5–11.1] (acute RA)
(serum)

Elevated in RA, especially in acute rather than chronic 
RA. Has negative correlation with anti–cyclic citrullinated 
peptide (anti-CCP) antibody levels and
CD8+CD28+T cell count.

[76]

SLE 5.12 (3.96–6.99) ng/mL (active SLE) and 5.35 (4.21–8.90) ng/mL 
(inactive SLE)
(plasma)

Elevated in SLE but does not have correlation with 
disease activity.

[82]

SLE, primary 
Sjögren’s syn-
drome (SS), 
and systemic 
sclerosis

132
± 353 ng/ml (SLE), 290 ± 504 ng/ml (primary SS), and 83,3 ± 251 ng/
ml (systemic sclerosis)
(serum)

Elevated in SLE, primary SS, and systemic sclerosis. Cor-
related with disease activity especially in primary SS.

[78]

Grave’s disease 1.79 ± 1.52 ng/ml
(plasma)

Increased in Grave’s disease, positively correlated with 
serum fT3, fT4, and TRAb levels, but negatively correlated 
with TSH level.

[31]

Myasthenia 
gravis

NA
(serum)

Increased in myasthenia gravis and correlated with treat-
ment response.

[83]

Neuromyelitis 
optica and mul-
tiple sclerosis

4.96 ±
1.90 ng/mL (neuromyelitis optica) and 4.71 ± 1.14 ng/mL (multiple 
sclerosis)
(plasma)

Elevated in neuromyelitis optica and multiple sclerosis, 
slightly higher in neuromyelitis optica than multiple 
sclerosis. Thereis no correlation with Expanded Disability 
Status Scale score.

[84]

Antineutrophil 
Cytoplasmic 
Antibody 
(ANCA)-Associ-
ated Vasculitis 
(AAV)

NA
(serum)

Elevated in AAV and correlated with treatment response. 
Potential marker for disease activity in AAV.

[85]

Asthma (adult) 1.8 (1.4–2.6) ng/mL
(plasma)

Elevated in allergic asthma during corticosteroid treat-
ment and positively correlated with serum total IgE level.

[86]

Asthma 
(pediatric)

0.83 (0.57–1.76) ng/mL
(plasma)

Elevated in allergic asthma in pediatric during treatment 
but does not correlate with total IgE level.

[87]

7.7 (6.3–10.3) ng/mL
(plasma)

Highly elevated in acute asthma attack, declined after 
treatment, has negative correlation with peak expiratory 
flow rate but positive correlation with eosinophil counts 
and eosinophil cationic protein level. There is no correla-
tion with total IgE level.

[88]

Mycobacterium 
tuberculosis 
infection

NA
(serum & pleural effusion fluid)

Increased in serum and pleural effusion fluid TB infected 
patients, higher in pleural effusion fluid than serum.

[89]

Hepatitis B virus 
(HBV) infection

NA
(serum)

Elevated in chronic HBV infection, correlated with ALT 
but not AST nor disease activity (HbeAg level).

[90]

HCV infection ≥ 1530pg/mL
(serum)

Predictor marker for progression to HCC. [91]

Gastric cancer NA
(serum)

Elevated in gastric cancer. [92]

Breast cancer 2.65 ± 1.48 ng/mL
(serum)

Elevated in breast cancer. [93]

Uveal 
melanoma

NA
(serum)

Increase 2.4 fold in metastasis uveal melanoma during 
anti-PD-1 treatment.

[94]

T2DM 19.0 (15.1–27.9) ng/mL
(plasma)

Elevated in diabetic nephropathy, correlated with fasting 
urine albumin:creatinine ratio.

[95]

NA
(plasma)

Predictor progression to ESRD in T2DM. [96]

Table 2 Role of sCD28 in various chronic disease
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of CD80, such that sCD80 suppresses PD-L1 function. In 
addition, sCD80 is also able to bind CD28 and cytotoxic 
T lymphocyte-associated molecule-4 (CTLA-4) (Fig. 2C 
and E) [24, 99, 100]. When it binds to CD28, sCD80 acti-
vates T cells (Fig. 2C). However, when it binds to CTLA-
4, sCD80 does not lead to either T cell suppression or 
activation, indicating that CTLA-4 is a receptor that 
functions as a decoy and does not have a biological func-
tion of T cell suppression (Fig.  2E) [24]. A study found 
that an increase in sCD80 levels leads to an increase in 
IFN-γ production by active T cells [99].

sCD80 levels were found to be > 15  µg/L in 24% of 
healthy individuals. However, sCD80 levels increased sig-
nificantly in patients with SLE and leukemia compared to 
the healthy population [25]. A study found that sCD80 
could prevent PD-L1 suppression and restore T cell 
activation by blocking interaction with PD-L1. In mice, 
sCD80 can slow tumor growth and trigger T cells to infil-
trate tumor cells in vivo. The study concluded that sCD80 
can act as a therapeutic agent to slow tumor growth [24, 
100, 101]. Apart from malignancy, sCD80 also plays a 
role in other chronic diseases, such as minimal change 
disease (MCD) in adult humans, as its level in urine 
samples were known to increase, but not in serum. It is 
thought that sCD80 plays a role in the pathogenesis of 
MCD [102]. In addition, various studies have also found 
increased levels of sCD80 in numerous diseases as shown 
in Table 3.

Based on Table 3, it can be concluded that sCD80 level 
in the blood is increased in autoimmune diseases, aller-
gies, chronic infections, and malignancies. In kidney dis-
ease, an increase in blood sCD80 level is not observed, 
but the levels are increased in the urine. sCD80 has so 
far been known as an immune checkpoint against malig-
nancy; however, further research indicates its roles 
beyond that in malignancy. The authors envisage that in 
chronic inflammatory conditions, the elevation in sCD80 
levels is caused by excess T cell activation, known as 
inflammaging. However, no study has reported the asso-
ciation of sCD80 levels with inflammaging that occurs 
during immunosenescence.

Soluble CTLA-4
Cytotoxic T lymphocyte-associated molecule-4 or 
CD152 is a receptor found on T cells and plays an 
important role in the regulation of the immune system. 

CTLA-4 is homologous to CD28 and can bind to the 
same ligand, namely CD80/CD86 on APC (Fig. 2A) [116, 
117]. CTLA-4 competes with CD28 for binding with 
CD80 and CD86. However, contrary to popular belief, 
binding of CTLA-4 to CD80/CD86 has no suppressive 
effect on T cells; instead, CTLA-4 acts as a decoy recep-
tor to prevent T cell activation (Fig. 2D) [24]. CTLA-4 is 
strongly stimulated by activated T and B cells, and is also 
expressed on striated muscle cells and placental fibro-
blasts. In addition, 3% monocyte also express CTLA-4 
on their cell surface and 20% monocytes express intra-
cellular CTLA-4. In vitro, when stimulated by IFN-γ, 
monocytes secrete the soluble form of CTLA-4, soluble 
CTLA-4 (sCTLA-4) [117]. In vivo, sCTLA-4 is formed 
from alternatively spliced mRNA or comes from shed-
ding membrane-bound CTLA-4 (Fig. 2D). Furthermore, 
sCTLA-4 can also be produced by T cells, especially 
Treg, in vitro. sCTLA-4 transcripts have been detected in 
lymph nodes, spleen, CD4 and CD8 T cells, B cells, and 
monocytes [116, 118, 119].

Several studies have found an increase in sCTLA-4 
levels in autoimmune diseases such as Graves’ disease, 
Hashimoto’s thyroiditis, myasthenia gravis, SLE, type I 
DM, celiac disease, systemic sclerosis, and autoimmune 
pancreatitis disease. As a result, it can be concluded that 
sCTLA-4 levels play an important regulatory role in the 
immune system. sCTLA-4, on the other hand, can inter-
fere with the interaction of CD80 or CD86 with CTLA-4, 
thereby blocking negative CTLA-4 signals (Fig. 2F) [116, 
118–120]. Another in vitro study on melanoma can-
cer cells found that these cells could produce CTLA-4 
and sCTLA-4, indicating a possible role of CTLA-4 and 
sCTLA-4 in cancer growth [33]. In addition, other stud-
ies have found that anti-CTLA-4 antibodies can bind 
sCTLA-4; further, sCTLA-4 has been shown to induce 
an antitumor response and has been suggested as an 
alternative therapeutic option for melanoma [99, 119]. A 
study in geriatric population found a positive correlation 
between levels of sCTLA-4 and pro-inflammatory cyto-
kines [121]. Many studies have been conducted regarding 
the role of sCTLA-4 in various diseases as summarized in 
Table 4.

According to Table 4, sCTLA-4 plays a role in autoim-
mune disorders cancer, chronic infection, and a variety of 
other chronic inflammatory conditions. Because chronic 
inflammation is a feature of immunosenescence, the 

Disease sCD28 level
(specimen)

Clinical importance Ref

NA
(serum)

Suspected to be one of risk factor of diabetic nephropa-
thy in T2DM.

[97]

Abdominal aor-
tic aneurism

NA
(plasma)

Elevated in abdominal aortic aneurism but does not cor-
relate with age, aneurism size, or CRP level.

[98]

Table 2 (continued) 
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Disease sCD80 level (specimen) Clinical importance Ref
SLE 0.29 (0.18–0.44) ng/mL (active SLE) and 0.28 (0.16–0.40) ng/mL 

(inactive SLE)
(plasma)

Elevated in SLE but has no correlation with disease 
activity.

[82]

Arthritis 15.98 ± 6.4 ng/ml (RA)
37.06 ± 8.2 ng/ml (osteoarthritis)
7.817 ± 5 ng/ml (other arthritis)
(synovial fluid)

Elevated in RA, osteoarthritis (OA), and other arthritis. [103]

RA > 0.22 ng/ml
(synovial fluid)

Elevated in synovial fluid of RA patients but not in serum. [104]

NA
(serum)

Elevated in RA and correlated with treatment response. [81]

Myasthenia 
Gravis

NA
(serum)

Increased in myasthenia gravis and correlated with treat-
ment response.

[83]

AAV NA
(serum)

Elevated in AAV and correlated with treatment response. [85]

Asthma 
(pediatric)

0.36 (0.28–0.43) ng/mL
(plasma)

Increased in allergic asthma and correlated with IgE level. [87]

0.3 (0.2–0.4) ng/mL
(plasma)

Highly elevated in acute asthma attack and correlated 
with corticosteroid treatment response.

[88]

Nephrotic 
syndrome

514.01 ± 62.6 ng/mL
(serum, rats)
152.48 ± 23.4 ng/mL
(urine, rats)

Elevated in serum and urine nephrotic syndrome rat. 
Urine sCD80 level is positively correlated with total cho-
lesterol, protein urine, and sCTLA-4 urine but negatively 
correlated with serum albumin level.

[105]

MCD 
(pediatric)

14.6 ± 30.8 ng/g creatinine
(urine)

Increased in MCD and correlated with treatment 
response.

[106]

524 ± 86 ng/g creatinine
(urine)

Elevated in relapse MCD but not MCD in remission focal 
segmental glomerulosclerosis

[107]

Diabetic 
nephropathy

0.27 (0.20–0.41) ng/mL
(plasma)

Elevated in diabetic nephropathy also, correlated with 
fasting urine abumin:creatinine ratio.

[95]

Mycobacteri-
um tuberculo-
sis infection

NA
(pleural effusion fluid)

Elevated in pleural effusion fluid but not in serum TB 
patients. Has positive correlation with LDH level and 
lymphocyte percentage in pleural effusion fluid.

[89]

HBV infection NA
(serum)

Decreased in chronic HBV infection, protective against 
liver cirrhosis.

[108]

NA
(serum)

Elevated in chronic HBV infection but does not correlate 
with AST nor ALT level.

[90]

Alcoholic 
hepatitis

9 pg/mL
(plasma)

Decreased in alcoholic hepatitis and correlated with 
disease activity, bacterial translocation, and inflammatory 
parameters.

[109]

HCC NA
(plasma)

Increased in HCC after trans arterial chemoembolization 
(TACE) but not in HCC after Lenvatinib treatment.

[110]

≥ 82 pg/mL
(plasma)

Increased in HCC post treatment with sorafenib. [111]

Hematology 
malignancy

0.02–3.75 ng/ml
(plasma)

Increased in chronic lymphocytic leukemia (CLL) and 
mantle cell lymphoma (MCL) but not in acute myeloid 
leukemia (AML) nor multiple myeloma (MM). Negatively 
correlated with prognosis, thrombocyte count, and 
hemoglobin level but positively correlated with leukocyte 
count in CLL.

[112]

Non-Hodgkin 
Lymphoma 
(NHL)

NA
(serum)

Elevated NHL especially CLL and small lymphocytic lym-
phoma (SLL) also correlated with poor prognosis.

[113]

Soft tissue 
tumor

566.8 pg/mL (benign) and 609.7 pg/mL (sarcoma)
(serum)

Negatively correlated with metastasis-free survival in 
benign soft tissue tumor and soft tissue sarcoma.

[32]

Non-small 
cell lung 
carcinoma 
(NSCLC)

6.32 pg/mL
(serum)

Elevated in NSCLC but does not correlate with disease 
severity.

[114]

Table 3 The role of sCD80 level in various chronic disease
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Fig. 2 Interaction between APC receptor (CD80 and CD86) with T cell receptor (CD28 and CTLA-4). (A) Both CD80 and CD86 can bind to CD28 or CTLA-4. 
(B) Binding of CD80 or CD86 to CD28 will activate T cells also shedding of CD28 (become sCD28). (C) Binding of sCD80 to CD28 will activate T cells. (D) 
Binding of CD80 or CD86 to CTLA-4 will suppress T cells also shedding of CTLA-4 (become sCTLA-4). (E) Binding of sCD80 to CTLA-4 will suppress T cells. 
(F) If CD80 or CD86 bind to either sCD28 or sCTLA-4, T cells will have no response and become anergy

 

Disease sCD80 level (specimen) Clinical importance Ref
65.11 pg/mL (preinvasive) and 132.06–176.76 pg/mL (invasive)
(plasma)

Elevated in invasive NSCLC compared with preinvasive 
NSCLC also correlated with invasive disease occurrence.

[115]

Uveal 
melanoma

NA
(serum)

Increase 1.3 fold in metastasis uveal melanoma during 
anti-PD-1 treatment.

[94]

Table 3 (continued) 
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Disease sCTLA-4 level (specimen) Clinical importance Ref
SLE 21.6–12.3 ng/ml

(serum)
Elevated in SLE but does not correlate with disease activity. [122]

4.05 (2.91–4.97) ng/mL (active SLE) dan 3.19 (1.73–4.67) 
ng/mL (non-active SLE)
(plasma)

Elevated in SLE and correlated with disease activity (SLEDAI 
score).

[82]

0–6326 pg/ml (median 1.044 pg/mL) (SLE)
0–4421 pg/ml (median 792.4 pg/ml) (healthy subjects)
(serum)

The level is very varying in SLE and healthy subjects. [123]

19.58 ± 2.7 ng/ml
(serum)

Elevated in SLE. [124]

RA NA
(serum)

Elevate in RA and correlated with disease activity and treat-
ment response.

[81]

4.4 ng/mL (4.3–4.7)
(serum)

Lower in RA compared with healthy subjects, higher in 
untreated RA rather than early RA patients but does not cor-
relate with clinical condition.

[76]

2.25 ± 0.4 ng/ml
(serum)

Elevated in RA and correlated with inflammation joint count 
but does not correlate with laboratory test (ESR and CRP), 
HAQ score, and tender joint score.

[124]

Autoimmune thyroid 
disease (ATD)

9.8 ng/mL
(serum)

Elevated in autoimmune thyroid disease (Grave’s disease 
and autoimmune thyroiditis) but does not correlate with 
clinical manifestation.

[125]

28 to 78 ng/ml
(serum)

Elevated in ATD. [126]

Grave’s disease 7.94 ng/mL
(serum)

Elevated in Grave’s disease but does not correlate with 
thyroid function nor Grave’s ophthalmology.

[127]

Myasthenia gravis NA
(serum)

Elevated in myasthenia gravis and correlated with treatment 
response.

[83]

Neuromyelitis optica 
and multiple sclerosis

1.86 ± 1.13 ng/mL (neuromyelitis optica) dan 1.37 ± 0.88 
ng/mL (multiple sclerosis)
(plasma)

Decreased in neuromyelitis optica and multiple sclerosis. 
There is no correlation with Expanded Disability Status Scale 
(EDSS) score in neuromyelitis optica and multiple sclerosis.

[84]

AAV NA
(serum)

Decreased in AAV but does not correlate with treatment 
response.

[85]

Spondyl-arthropathy 3.66 ± 0.3 ng/ml
(serum)

Elevated in spondyloarthropathy and correlated with dis-
ease activity also CRP level.

[124]

Systemic sclerosis > 26.5 ng/mL
(serum)

Elevated in diffuse cutaneous systemic sclerosis. Positively 
correlated with skin fibrosis width, serum IgG level, and anti-
topoisomerase I antibody level.

[128]

Psoriasis vulgaris 4.045 ± 4.466 ng/mL
(serum)

Elevated in psoriasis vulgaris and correlated with disease 
Psoriasis Area Severity Index (PASI) score.

[129]

Celiac disease 0.0–96.4 ng/mL
(serum)

Increased in untreated celiac disease, correlated with gluten 
intake, mucosal damage degree, also disease activity.

[130]

Autoimmune disease 6.8ng/mL (RA), 6.34ng/mL (SLE),
8.75 ng/mL (overlapping autoimmune disease)
(serum)

Increased in SLE, RA, and overlapping autoimmune disease. [131]

NA
(serum)

Increased in various autoimmune disease (autoimmune 
thyroid disease, celiac disease, primary biliary cirrhosis).

[132]

Asthma (adult) 2.8 (1.5–5.2) ng/mL (in non-steroid treatment), 2.9 
(2.1–5.4) (in steroid treatment)
(plasma)

Increased in allergic asthma and correlated with serum total 
IgE.

[86]

20.2 ± 5.4 mg/L (atopic asthma), 19.2 ± 6.2 mg/L (non-
atopic asthma)
(serum)

Elevated in atopy and non-atopy asthma, negatively corre-
lated with forced expiratory volume, predicted peak expira-
tory, and PaCO2, also positively correlated with lymphocytes 
count and disease severity.

[133]

Asthma (pediatric) 24.11 (15.19–24.33) ng/mL
(plasma)

Increased in allergic asthma but does not correlate with IgE 
level.

[87]

15.8 (11.3–19.2) ng/mL
(plasma)

Highly elevated in acute asthma attack, correlated with cor-
ticosteroid treatment response, negatively correlated with 
peak expiratory flow rate.

[88]

Table 4 The role of sCTLA-4 level in various chronic disease
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authors hypothesize that there is an increase in sCTLA-4 
levels during immunosenescence. However, no research 
on sCTLA-4 in the context of immunosenescence in the 
elderly has ever been conducted.

Conclusion
Soluble markers sCD163, sCD28, sCD80, and sCTLA-4 
have promising potential to confirm the pathological 
condition of immunosenescence. These soluble mark-
ers were detectable in high level in the serum samples 
using ELISA method, thus might be and might be used to 
replace the cell surface receptors as immunosenescence 

markers. However, further research comparing their 
diagnostic performance with the gold standard (cell sur-
face receptor) assay is required to make a highly accurate 
prediction model of immunosenensence.
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Disease sCTLA-4 level (specimen) Clinical importance Ref
Mycobacterium tuber-
culosis infection

NA
(serum)

Elevated in serum TB patients. [89]

Chronic HBV infection NA
(serum)

Elevated in chronic HBV infection, correlated with ALT level, 
but not with AST level or disease activity (HbeAg level).

[90]

NA
(serum)

Decreased in HBV infection that has progressed to liver 
cirrhosis.

[108]

Alcoholic hepatitis 10 pg/mL
(plasma)

Decreased in alcoholic hepatitis and correlated with 
disease activity, bacterial translocation, and inflammatory 
parameters.

[109]

Abdominal aortic 
aneurism

NA
(plasma)

Decreased in abdominal aortic aneurism but does not cor-
relate with age, aneurism size, or CRP level.

[98]

Endometriosis 75.53 pg/mL
(serum)
202.8 pg/mL (peritoneal fluid)

Increased in serum and peritoneal fluid of endometriosis 
stage III dan IV patients compared with stage I, II, or healthy 
subjects. But the level is higher in peritoneal fluid rather 
than in serum. Serum sCTLA-4 level has correlation with 
peritoneal fluid sCTLA-4 level.

[134]

Diabetic kidney 
disease

0.39 (0.28–0.51) ng/mL
(plasma)

Decreased in diabetic kidney disease. [95]

Nephrotic syndrome 7.70 ± 1.2 pg/mL
(serum, rats)
9.64 ± 2.7 pg/mL
(urine, rats)

Increased in serum and urine of nephrotic syndrome rat. 
Urine sCTLA-4 positively correlated with total cholesterol, 
protein urine, and negatively correlated with serum albumin 
level.

[105]

MCD (pediatric) 458 ± 652 ng/g creatinine
(urine)

Increased in MCD relapse but does not correlate with treat-
ment response.

[106]

ALL (pediatric) 132.0 ± 6208.7 ng/ml
(serum)

Elevated in active B-cell ALL and positively correlated with 
B cell leukemia percentage also potentially can be used as 
progression and disease severity marker.

[135]

Breast cancer 17.8 ± 5.9 ng/mL (preganglionic involvement)
17.2 ± 5.9 ng/mL (capsular invasion)
(serum)

Elevated in breast cancer with preganglionic involvement or 
with capsular invasion.

[93]

Gastric cancer NA
(serum)

Elevated in gastric cancer. [92]

HCC NA
(plasma)

Elevated in HCC after trans arterial chemoembolization 
(TACE) but not in HCC after lenvatinib treatment.

[110]

≥ 30.5 pg/mL
(plasma)

Increased 2.64 fold in HCC after sorafenib treatment also 
correlated with sPD-L1 and sBTLA level.

[111]

Non-small cell lung 
carcinoma (NSCLC)

1.65 pg/mL
(serum)

Elevated in NSCLC especially in antibody-drug conjugate 
group.

[114]

Malignant Melanoma > 200 pg/mL
(serum)

Elevated in malignant melanoma and correlated with best 
overall response (BOR) especially in immune-related stable 
or progressive disease, also correlated with ipilimumab treat-
ment response.

[136]

NA
(serum)

Increased in melanoma and higher than in SLE or healthy 
subjects.

[33]

Table 4 (continued) 
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