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Abstract 

Background It is of interest whether inflammatory biomarkers can improve dementia prediction models, such 
as the widely used Cardiovascular Risk Factors, Aging and Dementia (CAIDE) model.

Methods The Olink Target 96 Inflammation panel was assessed in a nested case-cohort design within a large, popu-
lation-based German cohort study (n = 9940; age-range: 50–75 years). All study participants who developed dementia 
over 20 years of follow-up and had complete CAIDE variable data (n = 562, including 173 Alzheimer’s disease (AD) 
and 199 vascular dementia (VD) cases) as well as n = 1,356 controls were selected for measurements. 69 inflammation-
related biomarkers were eligible for use. LASSO logistic regression and bootstrapping were utilized to select relevant 
biomarkers and determine areas under the curve (AUCs).

Results The CAIDE model 2 (including Apolipoprotein E (APOE) ε4 carrier status) predicted all-cause dementia, AD, 
and VD better than CAIDE model 1 (without APOE ε4) with AUCs of 0.725, 0.752 and 0.707, respectively. Although 20, 
7, and 4 inflammation-related biomarkers were selected by LASSO regression to improve CAIDE model 2, the AUCs 
did not increase markedly. CAIDE models 1 and 2 generally performed better in mid-life (50–64 years) than in late-life 
(65–75 years) sub-samples of our cohort, but again, inflammation-related biomarkers did not improve their predictive 
abilities.

Conclusions Despite a lack of improvement in dementia risk prediction, the selected inflammation-related biomark-
ers were significantly associated with dementia outcomes and may serve as a starting point to further elucidate 
the pathogenesis of dementia.
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Introduction
The number of dementia cases worldwide is continu-
ously rising and is projected to double nearly every 20 
years [1]. With the approval of Aduhelm, Leqembi, and 
Donanemab as the first effective treatments against 
Alzheimer’s disease (AD) by the U.S. Food and Drug 
Administration (FDA) there is hope for significant 
advancements in AD therapy. Although the drugs’ effi-
cacy, safety, and clinical application are still controver-
sial [2–5], they can be considered a first step towards 
an effective dementia treatment. The above and future 
improved drugs will likely be most effective in early 
AD treatment. Thus, it is vital to perform dementia 
risk assessments and make diagnoses early [6, 7].

The scientific literature on dementia risk prediction 
increased rapidly since new risk factors and biomark-
ers were identified during the last years. However, 
sample sizes and follow-up durations varied extremely, 
and external validation is often lacking [6]. Also, the 
underlying study populations are highly different. Risk 
prediction models combining demographic, cognition, 
physical and health risk factors are often best suited 
and versatile [8, 9]. The Cardiovascular Risk Factors, 
Aging and Dementia (CAIDE) model, which is based 
on data from a Finnish population-based study, is such 
a risk model [10]. Including several risk factors of 
dementia, the authors could predict the risk of devel-
oping dementia with an area under the curve (AUC) of 
0.769 (95% confidence interval (CI): 0.709 – 0.829). A 
second model containing additionally Apolipoprotein 
E (APOE) ε4 performed slightly better (AUC [95% CI]: 
0.776 [0.717 – 0.836]). The CAIDE model was inter-
nally and externally validated in many cohorts, includ-
ing high-income countries and various ethnicities 
[11–15]. However, the performance of the model was 
attenuated when applied to low-income countries as 
well as late-life cohorts [16, 17].

Dementia prediction models, including the CAIDE 
model, do not contain inflammatory biomarkers, 
although inflammation is a critical mechanism con-
tributing to dementia pathogenesis [18]. Previously, we 
showed that most of the 92 inflammation-related bio-
markers of the Olink Target 96 inflammation panel were 
significantly associated with all-cause dementia [19].

In this study, we fitted the CAIDE model to a large 
prospective cohort study and aimed to assess the 
potential of improving its ability to predict dementia 
risk by including inflammation-related biomarkers. 
Different models for all-cause dementia, AD, and vas-
cular dementia (VD) as well as a mid-life and late-life 
population, were created.

Methods
Study population
This study was based on data from the ESTHER study. 
The ESTHER study (Epidemiologische Studie zu Chancen 
der Verhütung, Früherkennung und optimierten Thera-
pie chronischer Erkrankungen in der älteren Bevölkerung 
[German]) is a prospective cohort study conducted in 
Saarland, Germany. Participants were recruited during a 
general health checkup at their general practitioners (GP) 
between 2000 and 2002 and were followed up 2, 5, 8, 11, 
14, 17, and 20 years after baseline. The study comprises 
9940 men and women between 50 and 75 years. Details 
have been described elsewhere [20]. Sociodemographic 
baseline characteristics were similarly distributed in the 
respective age categories as in a German National Health 
Survey conducted in a representative sample of the Ger-
man population around the time of recruitment [20]. The 
study was approved by the ethics committees of the Med-
ical Faculty of Heidelberg and the state medical board of 
Saarland, Germany.

Dementia ascertainment and case‑cohort design sample
Dementia information was collected during the 14-, 17-, 
and 20-year follow-up (median (interquartile range) fol-
low-up time: 16.3 years (13.5–17.0 years)) via standardized 
questionnaires sent to the GPs of the ESTHER study’s par-
ticipants. In this questionnaire, the GPs were asked whether 
dementia has been diagnosed among their patients and, if 
so, to provide all medical records from neurologists, psy-
chiatrists, memory clinics, or other specialized providers. 
This query was also sent to the GPs of study participants 
who had already dropped out due to ill health or death. 
Overall, information on whether dementia was diagnosed 
during 20 years of follow-up or not could be ascertained for 
n = 6,466 study participants (65% of the original cohort). A 
flowchart of the study population is shown in Fig. 1.

After excluding subjects with missing blood sam-
ples (n = 73) from participants with ascertained demen-
tia information, 6,297 participants were eligible to be 
drawn for the case-cohort sample and measurements of 
the Olink Target 96 inflammation panel. The randomly 
selected sample consisted of 1,611 study participants, of 
whom 115 were diagnosed with dementia during follow-
up. Among the remaining 4,686 study participants not 
randomly selected, 541 were incident dementia cases and 
added to the data set as well, resulting in 656 dementia 
cases overall. However, due to quality control warnings 
during the biomarker measurements, 75 participants 
were additionally excluded. Participants with miss-
ing data for any of the aforementioned CAIDE model 
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variables were further excluded (n = 159). For the last 
exclusion step, we compared the data of included and 
excluded participants with respect to age, sex, and edu-
cation, and no indication of selection bias was detected 
(Supplemental Table 1). The final sample included a total 
of 562 dementia cases and 1,356 controls.

Origin, assessment and modifications of the CAIDE model
The CAIDE model originates from the CAIDE study, a 
population-based cohort study from Finland assessing 
cardiovascular risk factors, aging, and dementia [21]. For 
the development of the CAIDE model, 1,409 participants 
aged between 39 and 64 years of the original CAIDE 

Fig. 1 Flowchart of dementia ascertainment during the 14-, 17-, and 20-year follow-up of the ESTHER study and study participant selection. 
Abbreviations: GP General practitioner
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study were included [10]. Of those, 61 developed demen-
tia during 20 years of follow-up. CAIDE model 1 consists 
of the variables age, education, sex, systolic blood pres-
sure, body mass index (BMI), total cholesterol, and physi-
cal activity, while CAIDE model 2 additionally includes 
APOE ε4 status.

In the ESTHER study, the CAIDE model variables 
age, sex, education, body mass index (BMI), and physi-
cal activity of participants were assessed during the 
baseline assessment by standardized self-administered 
questionnaires. The systolic blood pressure of partici-
pants was measured at baseline by the GP. Total cho-
lesterol levels were measured from serum samples by 
an enzymatic colorimetric test with the Synchron LX 
multicalibrator system (Beckman Coulter, Galway, Ire-
land). APOE genotypes were determined by TaqMan 
single-nucleotide polymorphism (SNP) genotyping 
assays (Applied Biosystems, California, USA). Endpoint 
allelic discrimination reads were used to analyze geno-
types with the Bio-RAD CFX Connect System (Bio-Rad 
Laboratories, CA, USA). In the case of missing directly 
genotyped APOE data (n = 70), imputed quality-con-
trolled data was used. For details, see Stocker et  al. 
2020 [22].

All variables used in the CAIDE model were available 
but it needed to be newly calibrated because the ESTHER 
cohort has a different age range, school education history 
and physical activity assessment than the CAIDE study. 
Fractional polynomials were utilized to determine the best 
fitting function of the continuous variables in the predic-
tion of all-cause dementia, AD, and VD [23] (data not 
shown). Because the linear function was the best fitting for 
systolic blood pressure and BMI, they were kept as con-
tinuous variables. Although the best fitting function was 
 x(−2) for age and total cholesterol for all-cause dementia 
and VD, they were still modelled with the linear function 
because the difference in model fit was small. Education, 
physical activity, and APOE genotypes were dichotomized 
by summarizing categories with very similar odds ratios 
(ORs) for the association with all-cause dementia (data not 
shown).

Measurement of inflammation‑related biomarkers
Levels of inflammation-related proteins were measured 
in baseline serum samples using the Olink Target 96 
inflammation panel (Olink Proteomics, Uppsala, Swe-
den). Details are described in Supplemental Text 1. In 
addition, a list of all biomarkers is depicted in Supple-
mental Table 2.

Statistical analyses
The associations of the CAIDE model variables with 
the outcomes of all-cause dementia, AD, and VD were 
determined by a multivariate logistic regression model 
adjusted for age, education, sex, systolic blood pressure, 
BMI, total cholesterol, physical activity, and APOE ε4 
status.

The predictive accuracy of the CAIDE model, includ-
ing baseline variables and the inflammatory biomarkers 
measured from baseline serum samples, was assessed 
for dementia diagnoses collected over 20 years of follow-
up, using least absolute shrinkage and selection operator 
(LASSO) logistic regression models. LASSO is a form of 
linear regression that uses shrinkage to exclude variables 
that are not useful for the prediction [24]. This makes 
the final equation simpler and easier to interpret. The 
CAIDE model variables were defined as not being penal-
ized by the LASSO regression and thus forced into the 
model. In a sensitivity analysis, all variables were penal-
ized. The parameter λ was determined by five-fold cross-
validation. The AUCs and 95% CIs were estimated using 
500 bootstrap samples for the CAIDE model and CAIDE 
model + inflammatory biomarkers for all-cause demen-
tia, AD, and VD as the outcome, respectively. While the 
CAIDE model only included the CAIDE model variables, 
the CAIDE model + inflammatory biomarkers addition-
ally included those of the 69 inflammation-related bio-
markers selected by the LASSO regression. Moreover, 
we distinguished CAIDE models 1 and 2, with only the 
latter including APOE ε4 carrier status among the unpe-
nalized CAIDE model variables. To determine if the dif-
ferences between the CAIDE model and the CAIDE 
model + inflammatory biomarkers models were statisti-
cally significant, bootstrap intervals for the differences 
in AUCs were computed. This involves the calculation 
of the AUC difference between the two models for every 
bootstrap sample, sorting and assessing the true AUC 
difference. The probability of a variable to be selected 
by the LASSO regression was additionally determined 
using bootstrap inclusion frequencies [25, 26], providing 
insights about the number of selections for each variable 
throughout the bootstrapping procedure. High inclusion 
frequencies indicate a continuous impact on the model’s 
performance by the respective variables.

Besides calculations for the total sample, the models’ 
discrimination performance was also evaluated in sub-
groups for mid-life (50–64 years) and late-life (65–75 
years) for all three dementia outcomes and CAIDE model 
1 and CAIDE model 2.
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The Statistical Analysis System (SAS, version 9.4, Cary, 
North Carolina, USA) was used for multivariate logis-
tic regression. Statistical tests were two-sided, using an 
alpha level of 0.05. LASSO regression was performed 
using the R package “glmnet” (R, version 3.6.3; glmnet 
package version 4.1–2) [27]. For AUC computation and 
bootstrapping, the R package ModelGood (R, version 
3.6.3; ModelGood package version 1.0.9) was used [28].

Results
Table 1 shows the CAIDE model variables of all included 
study participants separately for all-cause dementia 
(n = 562), AD (n = 173), and VD (n = 199) cases, as well 
as healthy controls (n = 1356). Most all-cause demen-
tia cases were represented in the late-life sub-sample 
(63.2%). Furthermore, a larger proportion of subjects 
among controls had a higher school education than the 
basic education of 9 years (23.6%) than among the all-
cause dementia cases (20.3%). Slightly more females than 
males were included in both cases (53.7%) and controls 
(54.7). Mean values for systolic blood pressure, BMI, and 
total cholesterol levels were comparable between all-
cause dementia cases and controls. In addition, all-cause 
dementia cases included a higher proportion of physi-
cally inactive participants (26.0% compared to 17.6%) and 

a much higher proportion of APOE ε4 carriers than con-
trols (39.5% compared to 24.3%). In a multivariate logistic 
regression model, only age, total cholesterol (inversely), 
physical activity (inversely) and APOE genotype were 
statistically significantly associated with all-cause demen-
tia (Supplemental Table  3). In the model for AD (Sup-
plemental Table 4), BMI was additionally significant and 
total cholesterol lost statistical significance in CAIDE 
model 1. In the model for VD (Supplemental Table  5), 
physical activity was not statistically significant. Age and 
APOE genotype were statistically significantly associated 
with all dementia outcomes.

Table 2 shows the discriminative performances of vari-
ous prediction models for all-cause dementia, AD, and 
VD. All CAIDE models had a high discriminative per-
formance in the total cohort with an AUC ≥ 0.7 (Fig. 2). 
However, inflammatory biomarkers selected by the 
LASSO logistic regression did not improve the models’ 
discriminative performance. The inflammation-related 
biomarkers selected by LASSO regression are shown 
in Table 3. In total, 20, 7, and 4 inflammatory biomark-
ers were added to the CAIDE model 2 for all-cause 
dementia, AD, and VD, respectively. The selected bio-
markers differed between the outcomes but were simi-
lar for CAIDE model 1 and 2 for each outcome. The 

Table 1 CAIDE model variables of included participants (n=1,918)

Abbreviations: APOE Apolipoprotein E, SBP Systolic blood pressure, BMI Body mass index
a “Inactive” was defined as <1 hour of vigorous or <1 hour of light physical activity per week. All other amounts of physical activity were grouped into the category 
“Active”

CAIDE model variables Controls  (n =1356) Cases 

All‑cause dementia  (n 
=562)

Alzheimer’s 
disease (n=173)

Vascular 
dementia (n=199)

Age (years), mean (SD) 61.7 (6.5) 66.3 (5.2) 66.3 (5.1) 66.5 (5.1)

 Mid-life (50-64 years), n (%) 867 (63.9) 207 (36.8) 65 (37.6) 68 (34.2)

 Late-life (65-75 years), n (%) 489 (36.1) 355 (63.2) 108 (62.4) 131 (65.8)

Education (years), mean (SD)

 ≤ 9 1036 (76.4) 448 (79.7) 141 (81.5) 160 (80.4)

 > 9 320 (23.6) 114 (20.3) 32 (18.5) 39 (19.6)

Sex, n (%)

 Female 742 (54.7) 302 (53.7) 97 (56.1) 105 (52.8)

 Male 614 (45.3) 260 (46.3) 76 (43.9) 94 (47.2)

SBP (mmHg), mean (SD) 138.9 (19.1) 142.2 (19.4) 142.2 (19.3) 141.9 (19.8)

BMI (kg/m2), mean (SD) 27.8 (4.4) 27.5 (3.9) 27.2 (3.7) 27.6 (3.9)

Total cholesterol (mmol/L), mean (SD) 5.9 (1.23) 5.7 (1.3) 5.7 (1.3) 5.7 (1.4)

Physical activity a, n (%)

 Inactive 239 (17.6) 146 (26.0) 53 (30.6) 49 (24.6)

 Active 1117 (82.4) 416 (74.0) 120 (69.4) 150 (75.4)

APOE genotype, n (%)

 ε4 non-carrier 1027 (75.7) 340 (60.5) 89 (51.5) 128 (64.3)

 ε4 carrier 329 (24.3) 222 (39.5) 84 (48.5) 71 (35.68)
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β-coefficients of all variables needed to calculate risk 
scores for the CAIDE + inflammatory biomarkers models 
and bootstrap inclusion frequencies for all-cause demen-
tia, AD and VD can be found in Supplemental Tables 6, 
7, 8 respectively. Bootstrap inclusion frequencies showed 

a relatively clear cutoff for variables selected by LASSO 
compared to non-selected ones (data not shown).

The prediction of CAIDE model 2 improved more for 
AD and all-cause dementia than VD compared to CAIDE 
model 1. Overall, the highest discriminative performance 

Table 2 Discrimination performance of models

Abbreviations: inflam Inflammatory, AUC Area under the curve, CI Confidence interval
a The CAIDE model 1 includes age, education, sex, systolic blood pressure, body-mass index, total cholesterol and physical activity
b The CAIDE model 2 includes the variables of CAIDE model 1 and APOE ε4 status
c The 95% CI is the bootstrap interval for the differences in AUCs.
d The inflammatory biomarkers selected by the LASSO regression are shown in Table 3
e The inflammatory biomarkers selected by the LASSO regression for all-cause dementia, Alzheimer’s disease and vascular dementia are shown in Suppl. Tables 9, 10 
and 11, respectively
f The inflammatory biomarkers selected by the LASSO regression for all-cause dementia, Alzheimer’s disease and vascular dementia are shown in Suppl. Tables 12, 13 
and 14, respectively

ntotal ncases CAIDE Model 1a CAIDE Model 2b

AUC (95% CI) ∆ AUC (95% CI)c AUC (95% CI) ∆ AUC (95% CI)c

Total cohort All‑cause dementia
 CAIDE Model 1918 562 0.702 (0.669-0.732) - 0.725 (0.695-0.755) -

 CAIDE Model + inflam. 
 biomarkersd

0.704 (0.670-0.738) 0.001 (-0.030-0.021) 0.724 (0.693-0.755) -0.001 (-0.027-0.019)

Alzheimer’s disease
 CAIDE Model 1529 173 0.702 (0.649-0.747) - 0.752 (0.704-0.798) -

 CAIDE Model + inflam. 
 biomarkersd

0.702 (0.646-0.755) 0.000 (-0.051-0.038) 0.749 (0.692-0.800) -0.002 (-0.049-0.029)

Vascular dementia
 CAIDE Model 1555 199 0.700 (0.651-0.749) - 0.707 (0.661-0.753) -

 CAIDE Model + inflam. 
 biomarkersd

0.698 (0.644-0.751) -0.002 (-0.050-0.0327) 0.706 (0.656-0.755) -0.001 (-0.047-0.039)

Mid‑Life (50‑64 
years)

All‑cause dementia
 CAIDE Model 1074 207 0.697 (0.652-0.743) - 0.721 (0.673-0.769) -

 CAIDE Model + inflam. 
 biomarkerse

0.701 (0.646-0.748) 0.004 (-0.044-0.040) 0.718 (0.665-0.768) -0.003 (-0.051-0.035)

Alzheimer’s disease
 CAIDE Model 932 65 0.700 (0.619-0.783) - 0.751 (0.678-0.830) -

 CAIDE Model + inflam. 
 biomarkerse

0.690 (0.602-0.772) -0.010 (-0.091-0.050) 0.737 (0.656-0.820) -0.014 (-0.087-0.036)

Vascular dementia
 CAIDE Model 935 68 0.665 (0.587-0.740) - 0.672 (0.589-0.750) -

 CAIDE Model + inflam. 
 biomarkerse

0.691 (0.610-0.762) 0.026 (-0.062-0.096) 0.693 (0.608-0.767) 0.021 (-0.083-0.089)

Late‑life (65‑75 
years)

All‑cause dementia
 CAIDE Model 844 355 0.582 (0.535-0.633) - 0.624 (0.570-0.676) -

 CAIDE Model + inflam. 
 biomarkersf

0.576 (0.528-0.626) -0.006 (-0.066-0.039) 0.609 (0.556-0.668) -0.014 (-0.069-0.024)

Alzheimer’s disease
 CAIDE Model 597 108 0.575 (0.473-0.655) - 0.651 (0.566-0.724) -

 CAIDE Model + inflam. 
 biomarkersf

0.595 (0.492-0.676) 0.021 (-0.087-0.109) 0.650 (0.561-0.725) -0.001 (-0.084-0.061)

Vascular dementia
 CAIDE Model 620 131 0.558 (0.465-0.637) - 0.582 (0.488-0.665) -

 CAIDE Model + inflam. 
 biomarkersf

0.547 (0.460-0.629) -0.010 (-0.100-0.074) 0.556 (0.475-0.641) -0.026 (-0.126-0.043)
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of all models was achieved for AD for CAIDE model 2 
without inflammatory biomarkers (AUC [95% CI]: 0.752 
[0.704–0.798]).

In a further step, we split the cohort into a mid-life 
(50–64 years) and late-life (65–75 years) sub-sample. 
A clear difference in dementia prediction between the 
age groups became apparent (Table  2, Supplemental 
Figs.  1    and  2). While the AUCs for the various mod-
els for all-cause dementia, AD, and VD varied between 
0.665 and 0.751 in the mid-life sample, AUCs in the late-
life sample were consistently lower and ranged between 
0.547 and 0.651. Inflammatory biomarkers selected by 
the LASSO regression did not lead to improvements in 
the models’ AUCs, neither in the mid-life nor the late-life 
subsample. The inflammatory biomarkers selected by the 
LASSO regression and the β-coefficients for their asso-
ciations with all-cause dementia, AD and VD, as well as 

the other CAIDE variables needed to calculate the risk 
prediction models and bootstrap inclusion frequencies, 
are shown in Supplemental Tables 9, 10, 11 for the mid-
life and Supplemental Tables  12, 13, 14 for the late-life 
sample, respectively. Comparable to the total cohort, the 
highest AUCs were achieved for AD when the inflam-
matory biomarkers were not included in CAIDE model 
2 (AUC [95% CI]: 0.751 [0.678–0.830] and 0.651 [0.566–
0.724] for the mid-life and late-life sample, respectively).

In a sensitivity analysis, we penalized not only the 
OLINK inflammation biomarkers but also the variables 
of the CAIDE model 1 in the LASSO regression. This 
analysis was exemplarily conducted for CAIDE model 1 
and the outcome of all-cause dementia. Interestingly, all 
CAIDE model variables except sex and education were 
selected, and the same list of inflammatory biomarkers 
with only one addition was chosen (CXCL5). In addition, 

Fig. 2 ROC curves of created all-cause dementia, Alzheimer’s disease, and vascular dementia risk prediction models for the total cohort. ROC 
curves for CAIDE model 1 (including age, education, sex, systolic blood pressure, BMI, total cholesterol, and physical activity, and CAIDE model 
2 (additionally including APOE ε4 carrier status) are depicted in black while curves of the CAIDE models plus inflammatory biomarkers chosen 
by LASSO regression (cf. Table 3) are depicted in grey. AUC and 95% bootstrap confidence intervals are provided with the respective graphs. The 
AUCs were obtained in a nested case-cohort study with n = 1,356 healthy controls and n = 562, n = 173, and n = 199 cases for all-cause dementia, 
Alzheimer’s disease, and vascular dementia, respectively. Abbreviations: BMI Body mass index, APOE Apolipoprotein, LASSO Least absolute 
shrinkage and selection operator
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the AUC of this sensitivity analysis (0.703 [0.674–0.734]) 
was almost identical to the one from the main analysis 
(0.702 [0.669–0.732]).

Discussion
In this prospective cohort study, we aimed to explore 
the potential for improving the predictive ability of the 
CAIDE model by including the serum levels of inflam-
mation-related proteins. Although several biomark-
ers were selected by LASSO regression to the CAIDE 
model for the prediction of all-cause dementia, AD, and 
VD, AUCs did not change. Nevertheless, these are still 
important findings in this research field.

Previous studies
In previous studies, the CAIDE score showed good exter-
nal validity in five cohorts without any adjustments to the 
model [11, 12, 14, 15, 29]. All of them reported a simi-
lar discriminative performance of the score. Moreover, 
a recent Cochrane review performed a meta-analysis on 

three studies externally validating the CAIDE model [30]. 
Overall the meta-analysis revealed a good predictive abil-
ity of the CAIDE model (AUC [95% CI]: 0.71 [0.66–0.76]). 
However, the authors expressed concerns about the cer-
tainty of the underlying data. Besides, the CAIDE risk 
score was evaluated as a tool for dementia risk prediction 
in different ethnicities and showed good predictive abil-
ity in subgroups for Asians and dark-skinned people [11]. 
However, the prognosis was poor in cohorts of Hispanic/
Latino Americans and Japanese American men [13, 31]. 
Furthermore, Stephan and colleagues recently showed 
that the CAIDE score has poor predictive ability in 
low- and middle-income countries (0.52 ≤ c ≤ 0.63) [17]. 
Furthermore, a poor performance of the CAIDE model 
was observed in late-life samples in previous studies by 
Anstey and Kivimäki et al. [16, 29] and Fayosse et al. [12]. 
The latter showed that the CAIDE model only signifi-
cantly predicted dementia at a mean age of 55 but not at 
60 or 65 years, when examining participants separately. 
Thus, despite its unquestionable merits, improvements of 
the CAIDE score are needed.

Table 3 Inflammatory biomarkers selected by LASSO regression in the total cohort (n=1,918)

Model 1 and Model 2 refer to CAIDE Model 1 and CAIDE Model 2, respectively

Abbreviations: For inflammatory biomarker abbreviations, see Supplemental Table 2

Inflammatory  biomarkers Improvement of the CAIDE models’ predictive ability for dementia outcomes

All‑cause dementia Alzheimer’s disease Vascular dementia

4E BP1 Model 2 - -

Beta_NGF Model 1+2 - -

CCL23 Model 1+2 - -

CCL3 Model 2 - -

CD244 Model 1+2 - Model 1+2

CST5 - Model 1+2 -

CXCL1 Model 1+2 - -

CXCL5 Model 1+2 - -

EN-RAGE Model 1+2 Model 1+2 Model 1+2

FGF21 Model 1 - -

IL18 Model 1+2 - Model 1+2

IL7 Model 2 Model 2 -

LAP TGF beta1 Model 1+2 Model 1+2 Model 1+2

LIFR Model 1+2 - -

MCP3 Model 2 Model 2 -

MMP1 - Model 2 -

OPG Model 1+2 - -

OSM Model 1+2 - -

SCF Model 2 - -

SIRT2 Model 2 - -

SLAMF1 Model 1+2 - -

TNFB Model 1+2 - -

TRAIL - Model 2 -

VEGFA Model 1+2 - -
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To our knowledge, four modifications of the CAIDE 
score are available: Tolea and colleagues designed a mod-
ified version of the CAIDE score (mCAIDE) to simplify 
the application of the model in a community-based set-
ting [32]. Therefore, laboratory measurements of choles-
terol levels were replaced by self-reported information 
about high cholesterol levels (yes or no). In addition, 
physical activity assessment was replaced by the mini 
Physical Performance Testing (mPPT). The mCAIDE 
score was first applied to a cohort of 230 community-
dwelling older adults in which it slightly improved the 
discrimination between cognitively impaired and unim-
paired individuals (AUC mCAIDE: 0.78 [0.71–0.85], 
AUC CAIDE: 0.71 [0.61–0.80]). Afterwards, the score 
was additionally validated in an independent clinical 
cohort of 219 participants and demonstrated to discrimi-
nate well between different stages of dementia.

Exalto and colleagues aimed to improve the predictive 
performance of the CAIDE score by including diabetes 
mellitus, depressed mood, head trauma, central obe-
sity, lung function, and smoking as additional mid-life 
risk factors [11]. However, the added variables did not 
improve its predictive abilities.

Harrison and colleagues tested if adding a compos-
ite score of two biomarkers of inflammation (interleu-
kin-6 and C-reactive protein) and one of oxidative stress 
(homocysteine) to the CAIDE score would improve the 
ability to predict cognitive decline for study participants 
of two cohorts aged 85 years or older [33]. Adding the 
biomarkers to the CAIDE score increased the hazard 
ratio (HR) for comparison of a high- and low-risk group 
from 1.14 (95% CI: 0.64–2.03, p = 0.65) to 1.96 (1.27–
3.42, p = 0.02) in the first cohort and from 1.64 (1.04–
2.58, p = 0.03) to 1.89 (1.18–3.02, p = 0.08) in the second 
cohort.

Finally, Geethadevi and colleagues applied the CAIDE 
model and two other dementia risk prediction models 
to an Australian cohort study, compared their predic-
tive ability, and created a hybrid model including several 
variables of all three models chosen by a machine learn-
ing algorithm [34]. The CAIDE model showed the lowest 
predictive ability for dementia of all models in this cohort 
of 3360 participants (AUC [95% CI]: 0.54 [0.49–0.58]). 
Nonetheless, the created hybrid model included all 
variables of the CAIDE model as well as history of head 
injury, depression, diabetes mellitus, smoking status, 
alcohol consumption, social activity, cognitive activity, 
fish intake, history of coronary artery disease (CAD), and 
APOE ε4. With this set of variables, the authors achieved 
an AUC of 0.80 (95% CI: 0.78–0.83). However, the hybrid 
model still lacks external validation.

Interpretation of findings
Compared to the original CAIDE model, the predictive 
ability in our study was lower but still good (AUCs of 
0.769 and 0.776 for CAIDE model 1 and 2 in the original 
study compared to 0.702 and 0.725, respectively, for all-
cause dementia in our study). In agreement with previ-
ous studies, we also observed a better predictive ability 
of the CAIDE model in mid-life than in late-life [12, 16, 
29]. However, since it is more important to have suitable 
dementia risk assessment tools in mid-life than in late-
life this is not critical. Targeting dementia risk factors in 
mid-life has a greater potential to prevent or delay the 
onset of the disease.

Although inflammation is considered to have a crucial 
role in dementia pathogenesis [35, 36], the discrimina-
tive ability of the CAIDE model did not increase when 
the inflammation-related biomarkers were added – nei-
ther in the total sample nor in the mid-life nor late-life 
sub-sample. This suggests that the variables included in 
the CAIDE model are already strong dementia predic-
tors capturing the predictive ability of inflammatory bio-
markers because there is some conceptual overlap (e.g., 
between age and inflammation or between low physi-
cal activity and inflammation). Apart from this, due to 
the long follow-up duration in our study and the single 
measurement at baseline, it is possible that the biomarker 
measurements only reflect a beginning inflammatory 
response of the immune system to early dementia onset 
and are not predictive for clinical dementia diagnoses in 
the long run.

Despite the lack of an added predictive value by the 
biomarkers, these results are still important for this 
research field. First, they underscore the robustness of the 
CAIDE model, which already encompasses key risk fac-
tors for dementia. CAIDE model 2, which comprises the 
APOE ε4 carrier status, reached the highest AUC without 
including the inflammation-related biomarkers. This is 
essential information for researchers aiming to improve 
the predictive abilities of the CAIDE and other dementia 
risk prediction models since it might be more promising 
to spend the time and resources on testing biomarkers 
addressing other aspects of dementia etiology.

Moreover, the inflammatory biomarkers chosen by 
LASSO regression might shed more light on the bio-
logical mechanisms underlying dementia pathogenesis. 
Notably, EN-RAGE and latency-associated peptide trans-
forming growth factor beta-1 (LAP TGF-beta 1) were 
among the biomarkers chosen by LASSO regression for 
all-cause dementia, AD, and VD. EN-RAGE also showed 
the highest and most consistent bootstrap inclusion fre-
quencies of > 73% for all outcomes (total cohort). The 
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biomarker vascular endothelial growth factor-A (VEGF-
A) was additionally chosen for all-cause dementia. In a 
previous analysis with our case-cohort sample from the 
ESTHER study, we showed that these biomarkers were 
independently associated with at least one of the out-
comes and discussed the potential mechanisms involv-
ing different aspects of dementia pathogenesis, namely 
neurodegeneration (EN-RAGE), amyloid beta (Aß) depo-
sition (LAP TGF-beta 1), and blood brain barrier perme-
ability (VEGF-A) [37].

Strengths and limitations
This study is characterized by the prospective cohort 
design, a long follow-up period of 20 years, its large sam-
ple size and its representativeness of the German health-
care setting. In addition, appropriate measures were 
taken to prevent overfitting of the developed models by 
applying LASSO logistic regression and bootstrapping 
[24, 28].

In the ESTHER study, dementia diagnoses are collected 
in a community-based setting. Although, diagnoses were 
collected from medical records, a thourough assessment 
of subtypes is often lacking the community setting. This 
might also explain the comparatively low proportion of 
AD cases. However, the most important outcome for 
dementia risk assessment in the community setting is all-
cause dementia. Moreover, due to a different age struc-
ture, education system, and physical activity assessment 
in the ESTHER study compared to the CAIDE study, 
the CAIDE model needed to be refitted. This hampers 
a direct comparison to the results of the CAIDE model. 
Due to cost reasons, biomarker measurements were con-
ducted in a case-cohort study design rather than a cohort 
design using the entire study population. In addition, bio-
marker measurements could only be performed once in 
baseline blood samples rather than in follow-up samples. 
This limitation may have resulted in an underestima-
tion of the AUC because the inflammation status could 
change during follow-up. Finally, the results of this study 
originate from a study population that comprises mainly 
of participants of European descent aged 50 to 75 years. 
Hence, the results might not be generalized to other 
populations.

Conclusion
This large, prospective cohort study showed that adding 
inflammation-related, blood-based biomarkers to the 
CAIDE model does not improve the model’s discrimi-
native ability for all-cause dementia, AD, or VD. Nev-
ertheless, as previously shown, the biomarkers selected 
by LASSO regression were significantly associated with 

the assessed outcomes and could thus serve as a starting 
point to further elucidate the pathogenesis of demen-
tia. Other factors, less conceptionally related to the 
variables already included in the CAIDE model, should 
be included in future studies to improve its predictive 
value.
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