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Administration (NASA) Artemis missions to the Moon 
and Mars, relative immunological risks from micro-
gravity and radiation exposure will vary throughout the 
course of the mission. A nuanced understanding of the 
independent and interactive immunological effects of 
microgravity and radiation will be instrumental in pre-
dicting health risks accurately; this will point the way to 
prioritizing countermeasure development accordingly for 
astronaut health and safety. Therefore, the ultimate focus 
of this review is to detail the interactive immunological 
effects of combined exposure to microgravity and radia-
tion observed through ground-based spaceflight-analog 
studies. Relevant observations obtained from astronauts 
on spaceflight missions to the International Space Station 
(ISS) will be compared and discussed (Table 1). Lastly, we 
provide guidelines for further systematic and rigorous 

Introduction
The spaceflight environment induces detrimental effects 
to the human body, resulting in a wide range of physi-
ological and psychological changes. These range from 
DNA damage and cell cycle dysregulations, to neuro-
ocular conditions, gastrointestinal microbiota alterations, 
circadian rhythm changes, inflammation, metabolomic 
changes, and more [1–6]. Two of the most significant 
stress factors in space are cosmic radiation and micro-
gravity [7]. With the National Aeronautics & Space 
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Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and 
radiation. The individual impacts of microgravity and radiation on the immune system have been extensively 
investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. 
Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between 
microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies 
such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of 
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studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal 
evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
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exploration of immune dysregulations from spaceflight 
exposure.

Microgravity and its terrestrial analogs
Well-characterized risks of microgravity include bone 
loss, muscle atrophy, and cardiovascular and neuro-
ocular fluid shifts that have been reviewed extensively 
elsewhere [6, 14]. Countermeasures have been effec-
tively implemented against some of these effects, such as 
resistance exercises to prevent muscle weakening [15], 
though it may be difficult to continue these in newer 
deep-space exploration spacecraft [16]. There are obvi-
ous ethical, health, and logistical limitations to perform-
ing repeated and controlled studies exploring the effects 
of radiation and microgravity in humans, limiting the 
development of novel mission-critical countermeasures. 
Therefore, research on microgravity effects is often per-
formed on the ground using analogs that have also been 
extensively described elsewhere [17, 18]. Briefly, the 
hindlimb unloading (HU) rodent model involves lifting 
the rodents’ hindlimbs off the cage floor by tethering its 
tail to a support bar above [19]. Forelimb weight-bearing 
is generally unperturbed. This results in a decreasing load 
borne by the hindlimbs contributing to bone and muscle 
atrophy [20]. HU also contributes to a cephalic fluid shift 
analogous to that observed in astronauts [19], enabling 
the study of cardiovascular, neurological, ophthalmic 
perturbations experienced in space [1].

More recently, the use of partial weight bearing (PWB) 
rodent models has been developed to mimic reduced 
quadrupedal weight loading [21–23]. By using a harness 
to lift all rodent limbs off the cage floor, the effects of 
gravity can be explored as a continuum between micro-
gravity, partial unloading similar to that on Mars, and 
full loading as on Earth [24]. Many studies that make use 
of PWB suspension focus on musculoskeletal param-
eters, with a direct association between degree of grav-
ity loading and musculoskeletal atrophy. However, there 
does not seem to be any threshold effect whereby skeletal 
and muscular disuse losses are minimized [25, 26]. The 
PWB does not create a cephalic fluid shift [27] as in the 

HU model and its use may be largely minimized to mus-
culoskeletal studies as a result. Mortreux and colleagues 
did demonstrate that the PWB model did not induce a 
state of chronic inflammation but to date, no studies have 
examined the direct relationship between PWB and pos-
sible immune disruptions.

Cell culture analogs, such as a rotating wall vessel 
(RWV) or random positioning machine (RPM), represent 
a benchtop method to mimic a hypogravic environment 
for spaceflight-analog studies. A RWV is a 2D micrograv-
ity simulator that employs continuous rotation around 
the horizontal axis to establish a “free fall” through the 
cell suspension medium, thus creating a low shear but 
mixed fluid environment [28]. Similarly, a RPM is a 3D 
microgravity simulator that rotates along both the x- and 
y- axis at different and random speeds for each axis [29]. 
In doing so, the gravity vector experienced by the cells is 
temporally randomized to an average of zero [30, 31]. It is 
important to note that the rotation rate of the vessel must 
be faster than the biological process in study but not so 
fast as to introduce centrifugal forces that cause cellular 
accumulations in certain areas [32].

Some recent studies have also been successful in simu-
lating microgravity without the use of rotation by instead 
using a magnetic field to counterbalance the gravity force. 
This also allows for the investigation of faster cellular pro-
cesses that would otherwise be unobservable with RWV 
or RPM [33]. Positive magnetophoresis, where cells bind 
to a labelled magnetic bead, levitates the cell by acting at 
the cell membrane surface and thus does not truly simu-
late microgravity as internal structures do not experience 
the same forces [33]. Additionally, it necessitates the for-
mation of dense cellular aggregates [34], and deviations 
from the locations of magnetic equilibrium may result 
in certain cells experiencing net forces of up to 2g [35], 
obfuscating the responses to microgravity being studied. 
Negative magnetophoresis on the other hand applies a 
magnetic force to the cell culture and medium, wholly 
counterbalancing the gravitational force to achieve truer 
weightlessness [33, 36]. Diamagnetic objects such as cells 
can experience stable magnetic levitation in the presence 

Table 1 Comparing spaceflight-analog studies to cytokine perturbations in astronauts
Cytokine Short-Duration Long-Duration Rodents Cells
GM-CSF No change [8] Decrease [9] Increase [10]
IL-1b Increase [11, 12] No change [8]

Increase [12]
Increase from sim-µG + SPE but not sim-µG + GCR [12] Increase [10]

IL-7 Increase [9] Increase [10]
IL-12 Increase [11] Decrease [9] Increase [10]
IFNα Increase [11] Increase [13]
TNFα Increase [11] Increase [8] Increase [13]
Observations of immune endpoints from astronauts in short-duration and long-duration spaceflight missions were compiled. Rodent and cell culture spaceflight-
analog studies that (1) investigated the effects of both microgravity and radiation and (2) assayed the same immune endpoints were compared. A significant number 
of immune endpoints that were not assayed in both astronauts and a spaceflight-analog study are not included in this table for ease of comparison. These included: 
CCL2, CCL3, CCL4, CCL5, CXCL5, FGF basic, G-CSF, IL-1a, IL-1ra, IL-2, IL-3, IL-5, IL-6, IL-8, IL-10, IL-12p40, IL-12, IL-13, IL-15, IL-17, thrombopoietin, and VEGF
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of strong magnetic fields, though these can induce vari-
ous biological effects including weakened immune func-
tion [37–39].

Finally, neutral buoyancy, such as that achieved in 
parabolic flights with sub-orbital sounding rockets, also 
represents another technique employed for spaceflight-
analog studies [30, 40]. The true weightlessness experi-
enced reflects the closest approximation to spaceflight 
conditions outside of experiments conducted onboard 
the ISS. While this allows for investigation of certain 
immune functions such as metabolics [40] or signal 
transduction [41], parabolic flights achieve relatively 
short hypogravic-periods (seconds to minutes), limit-
ing their practical uses for long-term functional immune 
assays. Nonetheless, they may represent an ideal study 
design to study the brief periods of launch and descent 
during which astronauts are exposed to hypergravita-
tional states. Recent short-term hypergravity studies 
have indicated alterations in intrinsic apoptotic signal-
ing pathways [42], cytoskeleton organization in T cells 
[43], post-transcriptional modifications in T cells [44], 
increased gene expression of Aire and RANK for medul-
lary thymic epithelial cells [45], and even prevention of 
microgravity-induced impairments in T cell activation 
[46]. Mice exposed to long-term hypergravity condi-
tions demonstrated disrupted intestinal microbiota [47], 
modified T cell receptor diversity [48, 49], and more [50]. 
As we move away from the dichotomous perspective of 
gravity as a binary (0g or 1g), and instead consider it on a 
continuum, long-term exposure to hypergravity may rep-
resent the next step in understanding the immunological 
effects of gravity in a dose-associated manner.

Space radiation and its terrestrial analogs
Radiation encountered by astronauts during spaceflight 
largely consists of galactic cosmic radiation (GCR) that 
originates outside the solar system [51]. Exposure to 
GCR consists of both proton and heavy-ion high-linear 
energy transfer (LET) radiation which can be more dam-
aging to biological systems than X- or gamma rays of the 
same level of doses [52, 53]. Although protons and alpha 
particles make up the majority of the relative flux of GCR 
dosages, significant dosages also come from carbon, 
oxygen, silicon, iron, zirconium, barium, platinum, and 
lead ions [54]. Protective abilities of current spacecrafts 
to such exposures may be limited, as the GCR nuclei 
have been shown to easily pass through thicker shields 
without significant losses in intra-vehicular radiation 
dose [55–57]. Solar particle events (SPE) such as solar 
flares present another possible radiation hazard. They 
can transmit massive amounts of proton irradiation in a 
matter of hours or days, potentially causing acute radia-
tion sicknesses including nausea, gastrointestinal pain 
and discomfort and faintness [58, 59]. In low Earth orbit 

(LEO) such as the orbit of the ISS, astronauts are also 
exposed to protons trapped in the Earth’s geomagnetic 
field [58]. Chronic exposure to radiation can increase the 
risk of immunosuppression [60], heart disease [61], carci-
nogenesis [62], and more [59].

Spaceflight-analog studies vary widely in their use of 
radiation exposures. Often, acute doses of proton or 
gamma radiation are utilized such as for SPE simulation, 
with a few studies employing heavy-ion high-LET expo-
sures from the NASA Space Radiation laboratory (NSRL) 
at Brookhaven National Laboratory (BNL) for GCR 
simulation. The NSRL SPE model uses proton irradia-
tion beams ranging in energy from 50 MeV/n (90.3% of 
the total dose) up to 150 MeV/n (0.15% of the total dose). 
This SPE model is similar to the fluence, or photon inci-
dence per cross-sectional area, of the August 1972 SPE 
event and the energy spectrum of the March 1989 event 
[63]. The GCR simulation at NSRL is a one-hour expo-
sure that utilizes different energy exposures of proton and 
alpha particle irradiation as well as heavy-ion deliveries 
of carbon, oxygen, silicon, titanium, and iron [64]. Finally, 
NSRL also has a simplified GCR simulation exposure of 
approximately twenty minutes consisting of proton, alpha 
particle, oxygen, silicon, and iron exposures [65]. It is 
not immediately clear whether the simplified GCR expo-
sure adequately achieves the same physiological assaults 
on the immune system as the full GCR simulation as no 
direct comparative studies have been performed.

Astronaut health and safety remains the top priority for 
spaceflight missions, and recent advancements in com-
putational modeling may offer promising avenues to sim-
ulate the effects of space radiation on biological systems. 
The same externally applied dose of radiation will result 
in different effective local doses and relative biological 
effects experienced by deeper organs. For example, thy-
mic mass was elevated over a month after whole-body 
heavy-ion irradiation whereas spleen, liver, and lung 
masses were unchanged [66]. By incorporating data from 
space missions, ground-based experiments, and particle 
accelerator research, these models can aid in predicting 
differential effects of radiation doses and assessing poten-
tial health risks for astronauts [67].

Immune disruptions in astronauts
Spaceflight studies have observed a variety of immuno-
logical alterations ranging from T cell function, lympho-
cyte proliferation, and cytokine production summarized 
recently [68–71]. For instance, primary lymphoid organs 
such as bone marrow and the thymus indicate reduced 
T-cell maturation and proliferation during spaceflight 
[72]. Astronauts also have increased susceptibility to 
infection [73], which may be due to increased pathogen 
virulence [71, 74], viral reactivation [75], or viral shed-
ding [76]. Astronauts experience decreased natural 
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killer (NK) cell numbers and functional activity [77, 78]; 
changes in white blood cell populations such as neutro-
phils, monocytes, helper T cells, and B cells [71, 79, 80]; 
and dysregulated cytokine levels during or after space-
flight [77, 78, 81]. This compromised immunity, as seen 
in spaceflight travelers and analogs thereof [82, 83], may 
put them at risk for widespread pathogenic invasions in 
space [78, 84].

For short-duration missions, increased levels of the 
following cytokines have been observed in astronauts 
onboard the ISS: tumor necrosis factor-α (TNFα), inter-
feron (IFN)-α, IFN-γ, interleukin (IL)-1b, IL-4, IL-10, and 
IL-12 [11]. It is also critical to note the differing cytokine 
disruptions in short-duration missions compared to long-
duration missions. In long-duration missions, increased 
levels of TNFα, IL-1ra, IL-8, thrombopoietin, vascular 
endothelial growth factor (VEGF), C-C motif chemo-
kine ligand (CCL) 2, CCL4, and C-X-C motif chemokine 
ligand (CXCL) 5 were observed. There were additionally 
no changes in plasma levels of IL-1a/b, IL-2, IL-4, IL-5, 
IL-17, CCL3, CCL5, IFNγ, granulocyte colony-stimulat-
ing factor (G-CSF), and basic fibroblast growth factor 
(FGF) [8]. Some reports have differed on whether levels 
of IL-10, IL-12, and granulocyte-macrophage (GM)-CSF 
have no change or decrease during long-duration space-
flight [8, 9].

As a result, concordance between observations in 
astronauts and spaceflight-analog studies has had dif-
fering successes (Table  1). Spaceflight-analog studies 
must be carefully designed in order to provide an accu-
rate comparison for astronaut health and performance–
i.e., short-term spaceflight-analog studies may lack the 
chronic immune perturbations necessary to identify cer-
tain dysfunctions. A key example here is an increase in 
IL-12 levels detected by human peripheral blood mono-
nuclear cells (PBMCs) in concordance with observations 
from astronauts on short-duration spaceflight missions 
[11] but not long-duration missions [9].

It becomes obvious that both microgravity (µG) and 
space radiation (IR) in the space environment imply 
diverse impaired immune function [85–87]. However, 
the vast majority of spaceflight-analogs examine each risk 
individually; studies that investigate the combined physi-
ological effects of µG and IR are critical for accurately 
assessing the risks associated with space exploration and 
for effective countermeasure development [1, 88]. It is 
difficult to directly determine the relative contribution of 
µG, IR and other stress factors to the observed changes 
on immune health in spaceflight [89]. Investigations 
with human subjects are limited by small sample sizes, 
relatively small number of flights available, and unstan-
dardized experimental conditions [90]. Using space-
flight-analogs such as HU mouse models and RWV cell 
culture studies can therefore prove an effective way to 

understand the modulatory interactions between µG and 
IR for certain immune endpoints (Fig. 1). Indeed, evident 
biological effects of combined µG and IR have been pre-
viously reviewed in skeletal, ocular, central nervous sys-
tem, cardiovascular, and stem cell responses using these 
models [1, 88, 91–95]. Herein we focus specifically on 
how µG-analogs and space IR-analogs independently and 
interactively modulate the immune system, rather than a 
simple summary of physiological changes observed.

In vivo rodent models
Cytokines evoke vast inflammatory and anti-inflamma-
tory signaling in the immune system, and regulation of 
their plasma levels is critical for proper immune function. 
Combined exposure rodent models indicate dysregulated 
cytokine levels similar to changes observed in astronauts’ 
plasmas collected while in space [9, 11, 12] (Fig. 2). For 
example, acute exposure to combined hindlimb unload-
ing (HU) for simulated microgravity (sim-µG) and solar 
particle event-style radiation (IR) increased cytokine 
concentrations of IFN-α, IL-6, and TNFα, a synergistic 
change that was not as significantly observed in sim-µG-
alone or IR-alone environments [13] (Fig. 3).

Studies on immunological endpoints for rodents flown 
on the ISS allow for more direct comparisons between 
spaceflight and ground-based spaceflight-analog obser-
vations. Female C57BL/6J mice flown on the STS-135 
Space Shuttle Atlantis mission for 13 days were charac-
terized for changes in splenic and thymic immune cell 
function and gene expression, adrenal catecholamine 
levels, and hepatic transcriptomics [96, 97]. Splenic 
mass and most splenic leukocyte subtypes were signifi-
cantly depleted after spaceflight exposure, but demon-
strated increased oxidative burst activity, phagocytosis, 
and gene expression patterns of endocytosis and peroxi-
some formation. Conversely, gene expression analysis 
indicated no increase in gene expression related to reac-
tive oxygen species (ROS) metabolism. This discrepancy 
between functional activity and gene expression pat-
terns is noteworthy, as other studies with rodents flown 
on the ISS also reported genetic downregulation of Nrf2 
and Ptgs2, related to oxidative stress, and Tnf, related to 
the inflammatory response [98]. Post-spaceflight sple-
nocytes also had decreased surface marker expression 
after ConA stimulation and decreased antigen presen-
tation marker expression after Toll-like receptor (TLR) 
agonist stimulation [99]. In the thymus, no correspond-
ing decrease in mass was observed, though there were 
higher levels of DNA fragmentation and changes in 
gene expression related to T cell activity and cancer 
immune surveillance. Both the ISS-flown rodents and 
some spaceflight-analog studies performed in rodents 
similarly reported decreased leukocyte populations [100, 
101] and increased corticosterone levels [102]. However, 
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other spaceflight-analog studies in rodents have reported 
differing observations such as no changes in splenic 
immune cells and decreases in thymic T cell populations 
after combined sim-µG + IR exposure [103]. This discrep-
ancy may be due to the radiation shielding and other 
protective countermeasures on the ISS that cause the 
spaceflight studies to experience primarily micrograv-
ity exposure alone, as opposed to truly combined expo-
sure. Their use as a direct comparison must therefore 
be approached cautiously. Depending on the particular 
spaceflight-analog study design, reproducible concor-
dance with immunological perturbations measured in 
true spaceflight observations may or may not be possible.

Immune cell populations
Myeloid cells were affected by interactions between 
microgravity-analog and radiation exposure in space-
flight-analog studies. These interactions notably differed 
depending on the timepoint and the type of radiation 
exposure utilized: one or four days after exposure, and 
proton IR or gamma IR. For example, one day after 
sim-µG + proton-IR exposure (three days sim-µG, one 
2.0  Gy 50  cGy/min proton-IR dose) there was an addi-
tive interaction between sim-µG and the proton-IR 

that slightly increased levels of serum CD14 mark-
ers for myeloid proliferation in female ICR mice [13]. 
Four days after the same sim-µG + proton-IR exposure, 
monocyte blood counts were decreased by nearly 70% 
even though individual microgravity-analog or radiation 
exposures had only minimally decreased the monocyte 
counts [100]. However, four days after sim-µG + gamma-
IR (three days sim-µG, one 2.0 Gy 44 cGy/min gamma-
IR dose), a synergistic interaction between sim-µG and 
gamma-IR significantly increased serum CD14 levels 
[13]. Neutrophil counts had no change after proton-IR 
alone and an increase after sim-µG-alone conditions, but 
after sim-µG + proton-IR, neutrophil count displayed a 
significant synergistic decrease in population fraction 
[100]. Granulocyte populations displayed an independent 
proton-IR-driven decrease 4 days post-exposure, but an 
interactive antagonistic decrease 16 days post-exposure 
[101]. Although the observed immune disruption is the 
same, the nuance of such synergistic interactions would 
ultimately be lost in single-hazard focused studies that do 
not incorporate both sim-µG and IR exposures into the 
study design.

In combined exposures, lymphoid cells display largely 
IR-driven decreases in population counts though some 

Fig. 1 Spaceflight and spaceflight-analog studies observe a diverse range of immunological perturbations from radiation and microgravity. Spaceflight-
analog research utilizes space-like radiation and microgravity analogs such as rotating wall vessels and hindlimb suspension to understand the immuno-
logical perturbations that arise from spaceflight travel. These range from altered cytokine levels to changes in immune cell proliferation, activity, function, 
and more. Ultimately, spaceflight travelers experience vast immunological dysregulations which the spaceflight-analog research attempts to elucidate 
and mitigate
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reports differ on the specific effects of sim-µG-alone 
exposures [100, 101]. Population counts of CD3+/
CD8 + cytotoxic T cells were unchanged four days after 
exposure to sim-µG or proton-IR alone, but significantly 
decreased by approximately 50% in combined exposure 
[100] (Fig. 4). This is another key example of a synergistic 
interaction between radiation and microgravity perturb-
ing immune ability that would not otherwise be obvious 
from studies investigating sim-µG or proton-IR alone. A 
similar synergistic pattern was observed for the decrease 
of the T lymphocyte proliferation index twenty-one days 
after exposure in female ICR mice [100] (Fig. 4). In male 

C57BL/6J mice, acute gamma-IR alone did not influence 
natural killer T cell (NK T) and natural killer 1 cell (NK 
1) populations, whereas chronic sim-µG + gamma-IR 
exposure over thirty days caused synergistic decreases in 
thymic regulatory T cells (Treg), NK T cells, and NK 1 
cells [103] (Fig. 4). Interestingly, these changes were not 
observed in splenic immune cell populations [103], so 
observed synergistic interactions are additionally spe-
cific to cell type, location, and IR dose. Immune effects 
are also clearly influenced by chronicity of exposure to 
spaceflight-analog conditions, radiation source, and post-
exposure readaptation time.

Fig. 2 Serum levels of cytokines in astronauts during long- and short-duration spaceflight missions. Serum levels of (A) IFNα and (B) IL-7 in astronauts 
during long-duration spaceflight missions, from pre-launch (L), in-flight (FD and FLT), to return on Earth (R) [9]. Serum levels of (C) IL-12 and (D) TNFα in 
astronauts during short-duration spaceflight missions [11]. Astronauts experience significant aberrations in cytokine levels during spaceflight missions, 
regardless of duration. Data shown are mean ± standard deviation (SD). Significance was evaluated via a Student’s t test by comparing all other data 
points to L-180 baseline data. Figures re-created and modified with permission from [11] and [9] under a CC-BY unrestricted open access license
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Sex differences
Such perturbations can significantly compromise the 
immune system’s functional ability to clear infections 
[73, 82, 83, 104]. Circulating levels of lipopolysaccharides 
(LPS) were synergistically increased four days after com-
bined exposure in female ICR mice, a result of reduced 
gastrointestinal ability to contain gram-negative bacte-
rial products [13]. Mice exposed to sim-µG + proton-IR 
had significantly increased bacterial blood counts after 
challenge with Pseudomonas aeruginosa or Klebsiella 
pneumoniae that was not reflected in the sim-µG-alone 
or proton-IR-alone conditions [102]. There was a further 
synergistic impairment of granulocyte proliferation from 
combined exposure [102], reflecting a state of immuno-
compromise and susceptibility to pathogenic invasions 
that astronauts are likely subject to as well [78, 82–84, 
104].

This immune dysfunction is heightened in female mice, 
contributing to significantly poorer health outcomes after 
in vivo bacterial challenge. In sim-µG-alone, gamma-IR 
alone, and proton-IR alone conditions, CH3/HeN and 

Balb/c female mice had increased morbidity compared 
to respective male mice three to five days after systemic 
P. aeruginosa challenge. After similar challenge in com-
bined sim-µG + proton-IR conditions, the sex difference 
was modulated: CH3/HeN female mice had 100% mor-
bidity compared to 60% in males, whereas Balb/c female 
and male mice both had 100% morbidity. Interestingly, 
in sim-µG + gamma-IR conditions the observed sex-
difference was decreased as Ch3/HeN female mice had 
90% morbidity compared to 80% in males [102]. This 
points to an influence of mouse strain on the synergistic 
immunological response to bacterial challenge observed 
in sim-µG + IR conditions. It is yet unclear which strain 
may more closely resemble human immunological dis-
ruptions in space, how to more accurately “humanize” 
mouse immune models, and how sex-associated effects 
differ based on the immune biomarker in question [105–
107]. The specific cause of such sex-associated morbid-
ity differences is also unclear and necessitates further 
investigations to determine the spaceflight-related health 

Fig. 3 Synergistic effects of combined exposure spaceflight-analog rodent studies on cytokine levels and expression. Serum levels of (A) IFNα and 
(B) TNFα in rodents exposed to control or spaceflight-analog conditions of irradiation (IR), simulated microgravity (Sim-µG), or combined Sim-µG + IR 
exposure. Cytokine levels are significantly synergistically increased in combined spaceflight-analog studies. Data shown are the mean ± SD (n = 5/group 
in duplicate). Significance was evaluated with ANOVA analyses with post-hoc group comparisons using Bonferroni correction. Data shown are from a 
single experiment representative of three experiments. Figures re-created and modified with permission from [13] under a CC-BY unrestricted open ac-
cess license
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risks for female astronauts, a rapidly growing cohort with 
potentially unique susceptibility risks [108–111].

Re-adaptations
A large question also remains of whether these observed 
immunological dysfunctions are present only during 
the spaceflight-analog exposure itself, or if they per-
sist chronically even after return to terrestrial (normal 
weight-bearing and radiation-free) conditions. Cosmo-
nauts experience persistently increased levels of von Wil-
lebrand factor, C-reactive protein, D-dimers, monocytes, 
and granulocytes even after a week of return to Earth 
[112].

Combined spaceflight-analog studies observe similar 
deficits: Mice underwent HU for 14 days with whole-
body proton-IR (50 cGy, 150 MeV) on day 7, and then 
four or thirty days of re-adaptation. After four days of 
re-adaptation, increases in blood NK cell counts were 
primarily driven by IR, but by thirty days of re-adapta-
tion there was a synergistic influence of the sim-µG + IR 
interaction decreasing NK cell counts in the blood [91]. 
These changes in interaction are notable for two rea-
sons: (1) it illustrates that re-adaptation to Earth’s condi-
tions is not a linear process of recovery to baseline, and 
(2) it suggests countermeasure development may need 
to focus on different exposure risks at different points 
during recovery. Similarly, endothelial nitric oxide (NO) 

Fig. 4 Synergistic effects of combined exposure spaceflight-analog rodent studies on immune cell proliferation. Rodents were exposed to control or 
spaceflight-analog conditions of irradiation (IR), simulated microgravity (Sim-µG), or combined Sim-µG + IR exposure. (A) Population of CD3+/CD8 + cy-
totoxic T cells is greatly depleted in combined exposure compared to control. (B) T lymphocyte proliferation rate in rodents exposed to Sim-µG + IR is 
significantly lower than control, IR-alone, and Sim-µG-alone exposures. Data shown are the mean ± SD (n = 4–6/group) [100]. Populations proportions 
of (C) CD3+/CD335 + thymic regulatory T (Treg) cells, (D) CD27+/CD335- natural killer (NK) T cells, and (E) CD3+/CD335 + NK 1 cells are also altered in 
combined spaceflight-analog exposure compared to IR-alone exposure. Data shown are mean ± confidence interval (CI) (n = 8/group); significance was 
evaluated with ANOVA and post-hoc analyses [103]. Figures re-created and modified with permission from [100] under a CC-BY unrestricted open access 
license and [103] under an Elsevier user license within STM permissions guidelines
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synthase (eNOS) immunoreactivity was unchanged in 
single-exposure cohorts and slightly increased in only the 
combined sim-µG + IR exposure cohort after four days of 
re-adaptation; this eNOS reactivity was further synergis-
tically increased after thirty days of recovery [91] (Fig. 5). 
In another study, rodents were exposed to sim-µG for 18 
days and/or 0.5 Gy simplified GCR IR on day 7 to assay 
changes in immune cell populations such as monocytes, 
NK cells, and B cells in peripheral blood. Early effects 
(day 24) were driven by IR exposure, but late effects (day 
133–147) were driven by sim-µG exposure [113]. Func-
tionally, impairments in T cell activation both 4 days and 
21 days after combined sim-µG (3 days of HU) and 2 Gy 
proton-IR were also driven independently by sim-µG 
exposure: no change in CD69 + markers was observed 
after IR, whereas significant decreases resulted after 
sim-µG and sim-µG + IR [100]. These results reinforce 
the dynamic temporal interplay between sim-µG and IR, 
both during and post-spaceflight; we must accordingly 
adjust our expectations and rehabilitation plans to opti-
mize astronaut recovery after return from space travel.

Single-hazard spaceflight-analog studies further under-
score this modulation: 40 days after total-body 56Fe IR 
exposure, peripheral leukocyte counts were unchanged, 
CD8 + T cell counts were decreased, and spontaneous 
blastogenesis increased. Splenic lymphocyte counts on 
the other hand were significantly decreased, and both 
spontaneous and mitogen-induced blastogenesis was 
unchanged [66]. This highlights both persistent immu-
nological dysregulation and differential recovery by 
immune organs after exposure to spaceflight-associated 
hazards. The mechanistic bases of these observations 
are poorly understood, necessitating further investiga-
tions into re-adaptation metrics with single-hazard and 
combined exposure spaceflight-analog studies. Particu-
larly, experimental design of spaceflight-analog studies 
in rodents should incorporate both sexes, various strains, 
and various time points during and after spaceflight-ana-
log exposure. This will illuminate the nuanced interplay 
between microgravity and radiation, point to mechanis-
tic explanations, and provide a basis for countermeasure 
development against chronic immunological risks.

In vitro cell culture studies
The combined effects of microgravity and radiation have 
been extensively investigated in other physiological sys-
tems using rotating wall vessels [32, 114, 115]. Notably, 
some cell culture spaceflight-analog studies differ from 
findings in astronauts. Human peripheral blood mono-
nuclear cells (PBMCs) were exposed to 2 min of 0.8-Gy 
or 2.0-Gy gamma-IR followed by 24  h of incubation in 
sim-µG with a RWV or 1g conditions; cytokine release 
of IL-1B, IL-7, and IL-12 was synergistically increased 
and detectable only after combined sim-µG + gamma-IR 

exposure [10] (Fig.  6). This reiterates both the pertur-
bations in cytokine levels noted in astronauts [11] and 
the synergistic interactions thereof noted in rodent 
spaceflight-analog studies. However, the PBMC’s also 
demonstrated a synergistic increase in GM-CSF after 
combined exposure whereas long-duration astronauts 
either had no change [8] or a decrease [9] in GM-CSF 
levels reported. Congruence between spaceflight studies 
in vivo in rodents and in vitro in cell culture is similarly 
mixed. Compared to rodents flown on the ISS, space-
flight-analog cell culture studies have demonstrated simi-
lar increases in double-stranded DNA breaks, and ROS 
activity through extracellular signal-regulated kinase 
(ERK), mitogen-activated protein kinase phosphatase-1 
(MKP-1), and caspase-3 activation [116, 117]. However, 
spaceflight-analog cell culture studies have also observed 
reduced cytokine secretion [118], mast cell degranulation 
[118], and both reduced [119] and increased [116, 117] 
apoptosis. The use of cell culture models as spaceflight-
analogs must be approached cautiously, as they are likely 
unable to replicate systems-level physiological changes 
observed in humans and in rodents.

Gene expression and regulation
Such cell culture studies may nonetheless provide rich 
opportunity for elucidation of gene regulation and sig-
naling pathways involved in the immune response during 
spaceflight-analog exposures. Lymphoblastoid TK6 cells 
were incubated for 24 h after control or 2-Gy gamma-IR 
exposure in static or sim-µG conditions using an RWV 
machine [91]. Combined sim-µG + gamma-IR exposure 
additively altered expression patterns of mRNA, miRNA, 
and lncRNA in lymphoblastoid TK6 cells, but synergis-
tically altered expression levels of the RNAs and their 
target genes. Pathway analyses suggest dysregulation of 
genes involved in immune and inflammatory responses 
including LPS/TLR, TNFα, and nuclear factor-kappa B 
cell (NF-κB) signaling pathways [120]. This is not unex-
pected since it has been additionally reported that sim-
µG-alone induces genes involves in the NF-kB pathways 
and cellular proliferation [121], while IR-alone induces 
genes involved in DNA damage and repair mechanisms 
[7, 122]. Although conducted in vitro, this may provide a 
mechanistic explanation for the effects observed in vivo 
such as increased LPS levels and altered cytokine levels in 
mice exposed to sim-µG + IR [13]. However, it is impor-
tant to keep in mind practical limitations of these con-
clusions. In attempting to analyze the miRNA data from 
astronauts aboard the ISS, we have found that quantifi-
cation analysis of the miRNA expression levels fluctuates 
significantly even between days, control subjects, and 
trials, making it difficult to draw significant conclusions 
from miRNA data (HW unpublished data).
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Fig. 5 Temporality of synergistic sim-µG + IR effects observed on endothelial nitric oxide (NO) synthase (eNOS) immunoreactivity. Mice were hindlimb 
unloaded for 14 days with whole-body proton-IR (50 cGy, 150 MeV) on day 7. eNOS immunoreactivity in rodents was assessed following (A) 4 days or (B) 
30 days of recovery from control or spaceflight-analog conditions of irradiation (IR), simulated microgravity (Sim-µG), or combined Sim-µG + IR.  (C) eNOS 
immunoreactivity was slightly increased in only the combined sim-µG + IR exposure cohort after four days of re-adaptation. This was further significantly 
and synergistically increased thirty days after exposure. These results reinforce the dynamic temporal interplay between sim-µG and IR, both during and 
post-spaceflight [91]. Data shown are mean density of eNOS-positive endothelial cells ± standard error of the mean (SEM) (n = 8/group). Figures re-created 
and modified from [91] with express permission from the publisher
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Fig. 6 (See legend on next page.)
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DNA repair and apoptosis
DNA repair processes are required for intact immune 
function [123, 124] such as creating genetic diversity in 
developing T and B cells for adaptive immunity [125]. 
DNA damage such as double strand breaks, chromo-
somal aberrations, micronucleus formation, and genetic 
mutations are synergistically affected by combined 
microgravity and space radiation exposure, as reviewed 
recently [7]. For example, the repair process of double 
strand breaks in human peripheral blood lymphocytes 
was analyzed after IR exposure with a heavy-ion Cs 
source at 5.155 cGy/s, sim-µG with 24 h of RWV, or con-
trol conditions. There were significant decreases in the 
rate of DNA repair and increased apoptotic levels after 
sim-µG + IR exposure, highlighting genotoxic effects of 
combined sim-µG and IR exposure beyond single-hazard 
levels [116]. A recent study investigating the effects of 
combined simulated spaceflight exposure on astrocytes 
similarly indicated sim-µG (24  h of 2D clinostat incu-
bation) had no significant influence on DNA double-
strand break repair, whereas different doses of radiation 
from X-rays, 12C ions, or 56Fe ions induced dose-, LET-, 
and time-dependent deficits in DNA repair [126]. Gene 
expression analyses further indicated that the sim-µG 
exposure after 2-Gy X-ray IR resulted in downregula-
tion of genes involved in DNA damage repair, mitosis, 
and cell proliferation [126]. This is similar to the altered 
gene expression relating to cell cycle progression and and 
senescence observed in rodents flown on the ISS for 15 
days [98]. Genomic instability from diminished DNA 
damage repair may contribute further to the compro-
mised immune status and increased infection susceptibil-
ity previously discussed in vivo [78, 82–84, 102, 104].

Programmed cell death is a critical response to DNA 
damage to preserve physiological cellular functioning. 
For example, lymphoblastoid TK6 cells that were incu-
bated for 24 h after control or 4-Gy gamma-IR exposure 
in static or sim-µG conditions using an RWV machine 
were then assessed for genomic damage and apoptosis 
levels. Combined sim-µG + IR led to a significant increase 
in genomic mutation frequency but a significant reduc-
tion in apoptotic cell counts compared to IR-alone [119]; 
this points to an aberrantly increased frequency of dam-
aged cells surviving the physiological apoptosis process. 
Human fibroblasts simultaneously exposed to sim-µG 
(24 h of RWV) and 1 Gy of Carbon-ion or X-ray radia-
tion had decreased expression of cell cycle-suppression 

genes ABL1 and CDKN1A and increased expression of 
cell cycle-promoting genes. The authors therefore sug-
gest that cells may successfully pass through cell cycle 
checkpoints despite DNA damage due to combined 
effects from sim-µG and carbon-ion IR [127]. Conversely, 
human B lymphoblasts exposed to 30 min of sim-µG with 
RWV and heavy-ion carbon IR exposure (300  MeV/u, 
1  Gy/min) had decreased cell survival, increased apop-
tosis, and increased ROS-sensitive apoptosis signaling 
[117]. These functional changes in immune surveillance 
may be mediated through heavy ion radiation-induced 
intracellular ROS generation as the observed defects 
were reversed with antioxidant administration [117]. 
Therefore, although many spaceflight-analog studies indi-
cate decreased apoptosis and therefore immune function, 
this cannot be definitively or mechanistically concluded. 
More combined exposure studies are needed in a variety 
of cell types and in co-culture with neighboring cell types 
to determine the complex signaling networks that govern 
the DNA damage and apoptotic responses in spaceflight.

Conclusions and other considerations
This review presents a unique and diverse set of immu-
nological interactions that occur between microgravity 
and radiation exposure. Combined spaceflight-analog 
models such as hindlimb unloading and rotating wall 
vessels demonstrated largely similar immunological 
perturbations compared to astronauts onboard the ISS. 
Results from cell culture spaceflight-analog studies must 
be interpreted cautiously as they do not fully replicate 
all dysregulations that astronauts have experienced dur-
ing spaceflight missions. Broadly though, the spaceflight-
analog models point to additive effects in myeloid counts 
and lymphoblastoid RNA expression patterns; synergis-
tic effects in cytokine levels, T and NK cell proliferation, 
and DNA repair ability; and some antagonistic effects in 
lymphoid and granulocyte counts. It becomes clear that 
the interactive nature between microgravity and radia-
tion in spaceflight-analog studies differs with time, sex 
and age for rodent-analog studies, radiation dosage and 
type, and cell lines for immune markers. Few studies 
however effectively demonstrate convincing mechanistic 
explanations for this. Combined-exposure spaceflight-
analog studies are likely to provide more accurate base-
line understandings of observed immune dysfunction, 
allowing for improved risk prediction and mitigation for 
spaceflight missions. It must also be remembered that 

(See figure on previous page.)
Fig. 6 Synergistic effects of combined exposure spaceflight-analog cell studies and isoproterenol on cytokine expression. Cytokine concentration in 
cell culture medium measured using fluorescent secondary antibodies. Cells were exposed to gamma irradiation with 2 Gy or not, and subsequently 
incubated in 1 g or µg. After 24 h, cytokine concentration of (A) IL-12, (B) IL-7, (C) IL-1b, and (D) GM-CSF was measured. Radiation induced cytokine pro-
duction in µg but not in 1 g. Isoproterenol treatment prior to radiation prevented abnormal expression of all cytokines. Data shown are mean ± SEM from 
10 independent experiments; p-value threshold after correcting for false discovery rate is 0.0049 (significant differences indicated with *). The synergistic 
effect of isoproterenol and radiation in µg was significant for all four cytokines [10]. Figures re-created and modified with permission from [10] under a 
CC-BY unrestricted open access license
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such complex immune markers are perturbed by much 
more than just microgravity and radiation.

Ageing
As we open the door to human space exploration beyond 
LEO, it will be critical to understand the risks of older 
astronauts and those undergoing long-term spaceflight 
in particular. Characterization of the immune response 
in an elderly astronaut (age 77) revealed increased viral 
reactivation, adrenocorticotropic hormone levels, cor-
tisol levels, monocyte counts, and NK cell counts com-
pared to younger crewmembers [128]. Dysregulations in 
several immune parameters such as IL-4, IL-10, IL-12, 
and IFNγ have shown to differ between astronauts in 
short-term and long-term spaceflight missions [8, 9, 11]. 
Closer examination of longitudinal immune changes is 
critical to preparing for NASA’s upcoming Artemis mis-
sions to the Moon and Mars.

Advanced age is also closely associated with patho-
physiological immune aberrations such as persistent 
immune system activation, increased inflammatory 
states, immunosenescence, increased severity of infec-
tions, and more [129–135]. This can lead to increased 
morbidity rates with increasing age [136] and can have 
drastic consequences in spaceflight missions far removed 
from comprehensive healthcare access. Many spaceflight-
associated changes observed in astronauts including 
genomic instability, dysfunctional protein homeostasis, 
mitochondrial dysfunction, stem cell depletion, impaired 
intercellular communication, and irregular gut microbi-
omes are similar to those observed in physiological age-
ing, as recently reviewed [137]. Notable age-associated 
immune perturbations that mimic those observed in 
astronauts include chronic inflammation [137], cyto-
kine perturbations [132, 138], viral reactivation [139], 
cortisol increases [140], and NK cell function decreases 
[141] (Table  2). Indeed, Capri and colleagues recently 
described spaceflight missions as “accelerating aging” by 
contributing to such inflammatory activity [87]. However, 
if sufficient re-adaptation measures can be employed, this 
is not necessarily the case for astronauts whose immune 
function may normalize to baseline upon return to Earth.

Many of the spaceflight-analog studies described herein 
utilized younger rodents (5–12 weeks old) and assayed 
only short-term effects of spaceflight-exposure. Nonethe-
less, a mere three weeks of hindlimb unloading in young 
mice induced decreases in IgM repertoire and B cell lym-
phopoiesis similar to older mice who were not exposed 
to spaceflight-analog conditions [143, 144]. Rodent mod-
els of Alzheimer’s disease (AD) have also begun to elu-
cidate the neural effects of age-associated comorbidities 
in spaceflight-analog studies. GCR exposures have been 
shown to differentially alter neuropathology and behav-
ior in sex- and mutation-associated manners [145, 146]. 
Proton irradiation increases deposition of amyloid-beta 
plaques but did not change cytokine levels of IL-1, IL-6, 
CCL2, CXCL10, and TNFα [147]. A head-down bedrest 
(HDBR) study in older adults was recently conducted 
by the Canadian Space Agency to compare the effects 
of ageing and spaceflight-associated fluid shifts com-
prehensively and longitudinally, though results are still 
forthcoming [148]. Further comparative and longitudinal 
studies may prove informative in unravelling the rela-
tive contributions of microgravity and radiation to age-
related immune effects.

Stress response
Various other endogenous factors, such as stress hor-
mones or inflammatory signaling, can also further 
compromise immune function. For example, the Nrf2 
transcription factor regulates expression of cytoprotec-
tive and antioxidative stress response genes. In Nrf-2 
knockout mice that flew onboard the ISS for 31 days, 
spaceflight-induced immunosuppression and tissue 
inflammatory markers were markedly increased com-
pared to wild-type mice [149]. This is a non-trivial limita-
tion as the HU model has been shown to induce at least 
transient stress responses in rodents such as increased 
serum corticosterone or atrophy of lymphoid organs 
[19, 150–152]. Sim-µG, IR, and particularly combined 
sim-µG + IR increased serum total corticosterone levels 
in C3H/HeN female mice [102], indicating an additive 
activation of the adrenergic stress response. Conversely, 
female C57BL/6J flown for 13 days on the STS-135 
mission demonstrated increased adrenal and hepatic 

Table 2 Comparing the immunological responses to ageing and spaceflight travel
Immune 
Endpoint

Responses to Ageing Responses to Spaceflight Travel

Inflammation Increased cytokine, cortisol levels, chronic inflamma-
tion [137]

Increased cytokine, catecholamine levels [9, 11, 12, 137]

Infections Increased severity and recurrence of infections [135] Increased viral reactivation, susceptibility to infections, viral shedding [111]
Immune Cells T cell exhaustion, altered numbers of monocytes and 

dendritic cells [135]
Changes in white blood cell populations such as neutrophils, monocytes, 
helper T cells, and B cells [71, 79, 80]

Morbidity Increased all-cause morbidity [135] Decreased all-cause morbidity [142], Mixed findings on mortality rates 
from cardiovascular events [95, 142]

Recovery No analogous recuperation Mixed ability to recover after return to Earth [72, 87]
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corticosterone levels, but no changes in catecholamine 
levels [96]. This discrepancy and its impact on functional 
changes in immune activity should be investigated fur-
ther, particularly as increased catecholamine, cortisol, 
and intracellular cAMP levels have been linked to modu-
lations in several immunological processes such as lym-
phocyte activation or apoptotic cell death [153–158]. 
Stress hormones may also influence the immune system’s 
ability to produce antibodies [153, 159] and modulate 
immune cell function [160], for example by activating 
the NF-kB pathway which was already observed to be 
disrupted in sim-µG + IR cell culture models [120]. The 
effects of combined sim-µG and IR on these stress-
induced pathways are not fully understood, though it 
may play a significant role in the cellular response to 
DNA damage repair [7]. Additional environmental expo-
sures in the space environment can further complicate 
the stress-related immune effects observed, such as sleep 
deprivation [161] or long-term social isolation [162, 163].

Countermeasure development
Over the years of the International Space Station’s oper-
ations, major physiological improvements in immu-
nity, stress, and viral reactivation have been made from 
updated cargo and resupply frequencies, exercise pro-
tocols, nutritional quality and supplementation, and 
schedule management, thoroughly reviewed elsewhere 
[164, 165]. By continuing to characterize this plethora 
of both acute and chronic immunological dysregula-
tions indicated from both µG and IR and their synergistic 
interactions, it will become more feasible to develop in-
flight countermeasures and post-flight readaptation mea-
sures. Astronauts have a heightened risk of exposure and 
immune damage from infectious diseases during space 
missions [71, 72, 102, 166–168]. Observations made by 
the spaceflight-analog studies discussed underscore the 
cellular, genetic, and functional immune dysregulations 
that contribute to these risks.

Beyond these administrative-based changes, phar-
macological countermeasures may present a possible 
intervention to these immune risks. Isoproterenol, a sym-
pathomimetic drug, decreased IR-induced apoptosis in 
PBMCs exposed to sim-µG. Similar to other findings dis-
cussed herein, neither sim-µG nor IR-alone significantly 
increased cytokine production, but in sim-µG + IR condi-
tions, a highly significant increase was observed in IL-7, 
GM-CSF, IL-12, and IL-1b concentrations. Immediate 
prior administration of isoproterenol prevented cytokine 
increase and kept it within-control levels. The synergis-
tic effect of isoproterenol + sim-µG + IR was significant 
for all four cytokines [10] (Fig. 6). These results suggest 
that prophylactic isoproterenol is synergistically able to 
prevent some sim-µG and IR-mediated immune changes. 
Similarly, antioxidant administration of N-acetyl cysteine 

and quercetin were able to reverse sim- µG + IR-induced 
inhibition of apoptosis in human B lymphoblasts, as 
discussed earlier [117]. These findings open the door to 
novel insight on regulatory pathways and possible phar-
macological countermeasures to mitigate spaceflight-
mediated damages.

However, it is important to keep in mind that weakened 
immune systems and microgravity or radiation-induced 
drug instabilities may inhibit the pharmacokinetics and 
efficacy of antimicrobial agents utilized; studies directly 
investigating these pharmacokinetics and pharmacody-
namics in space are extremely limited though [169–171]. 
Established alterations in gut microbiome that occur as 
a result of spaceflight travel can influence bioavailability 
of drug absorption [172]. HDBR studies have also impli-
cated slightly lower (but not statistically significant) cip-
rofloxacin absorption [173] and delayed absorption and 
clearance of pivmecillinam and benzylpenicillin [174, 
175], though the clinical significance is unclear. Research 
on drug stability has focused on radioprotective packag-
ing, optimal storage conditions, careful consideration of 
pharmacological formulation in liquid or solid forms, 
and multi-pronged pharmaceutical regimes such as non-
antibiotics combined with tetracyclines to take advantage 
of their synergistic activities [169]. There is limited data 
on pharmaceuticals that can safely target both the micro-
gravity and radiation-induced immune dysregulations 
since, as we have discussed, they can have independent 
mechanisms or pathways. Further investigations may 
prove useful in elucidating possible targets for pharma-
cological intervention, especially as inter-individual vari-
ability will notably influence the efficacy of developed 
countermeasures and the advent of personalized medi-
cine in space [176].

Guidelines for standardized study design
Most studies examining stressors to astronaut physiology 
and performance examine individual risks despite grow-
ing evidence that many spaceflight hazards affect astro-
naut health in combination with one another. Beyond 
microgravity and radiation, this can include ageing, stress 
responses,  social isolation, poor sleep quality or quan-
tity, and disrupted circadian rhythms [177–179]. Syner-
gistic interactions between microgravity and radiation 
in particular often differed depending on the time point, 
IR dose, IR type, sex, and strain used in the study. With 
such diversity of experimental design for spaceflight-ana-
log studies, we obtain valuable metrics for many rodent 
models, time points, cell and tissue types, and more but 
meta-analytical comparisons become prohibitively dif-
ficult. There are clear diverse modulatory interactions 
within the immune systems that cannot be accurately 
assayed through studies focusing on single risks alone.
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Some experimental designs also did not accurately 
reflect the simultaneous combined µG + IR exposure 
experienced in space: vast variability was present in 
whether spaceflight-analog systems were exposed to IR 
before, during, and/or after sim-µG. Immune dysregu-
lations are dynamic; acute and/or sequential exposures 
may have contributed to the greater concordance of 
spaceflight-analog studies with observations from short-
duration spaceflight missions. In the setting of preparing 
for NASA’s Artemis missions and long-duration human 
space exploration, longitudinal studies with chronic 
exposures will prove greatly informative.

Finally, irradiation doses in many of these studies 
ranged from 0.5 Gy to 2.0 Gy. Comparatively, astronauts 
on the ISS receive approximately, 1 mSv/day though this 
will likely double or triple with travel past LEO [56, 180]. 
The impacts of acute whole-body SPE exposure are diffi-
cult to calculate due to heterogeneities in radiation deliv-
ery to internal organs and extrapolating rodent model 
data across species [181]. Current estimates predict doses 
of <0.5 Gy-Eq to internal organs and dose delivery rates 
peaking at approximately 0.12  Gy-Eq/hr to hematopoi-
etic organs such as bone marrow [182, 183]. The radio-
biological effectiveness of the IR dose will differ based on 
IR source, whether gamma rays, X-rays, or charged par-
ticles such as protons or heavy ions [184–188]. Although 
proton-IR may effectively mimic SPE’s, gamma-IR is only 
one component of GCR and does not provide a truly 
comprehensive analog for GCR [189]. It is also difficult to 
predict how simultaneous SPE and GCR exposures may 
affect the pathophysiological changes to human health 
and performance [56, 190].

It is critical that future study designs more rigorously 
mimic the spaceflight environment. The spaceflight-ana-
log study, whether rodents or cells, should incorporate 
both sim-µG conditions and chronic IR simultaneously, 
rather than sequentially as performed in many of the 
reported studies. PWB models may prove to be an attrac-
tive way to assess the effects of partial gravity on the 
immune system, as relevant for future missions on 
Mars. Radiation exposures should incorporate lower 
dose ranges below 0.5  Gy and from heavy-ion sources 
to simulate prolonged GCR exposure [189, 191]. Finally, 
a greater emphasis should be placed on longitudinal 
studies evaluating specific immunological alterations 
in diverse combined environments such as age, sex dif-
ferences, circadian disturbances, nutrition, and more. 
Investigating countermeasures and re-adaptation metrics 
will be particularly informative in safeguarding astronaut 
health and performance.

As we move into a new age of deep space human explo-
ration, exposure to combined environmental stressors 
will present critical health and safety risks for astronauts. 
There will remain a pressing need to further investigate 

the complex immunological health risks arising from 
microgravity, radiation, and more.
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