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Abstract
Background: Immunosenescence is an age-associated disorder occurring primarily in T cell compartments, including
altered subset composition, functions, and activation. In women, evidence implicates diminished estrogen in the
postmenopausal period as a contributing factor to diminished T cell responsiveness. Since hypoestrogenism is present in
postmenopausal women, our objective focused on whether T cell activation, defined as signalling molecule expressions
and activation, and function, identified as IL-2 production, were affected by low estrogen.

Methods: Using Jurkat 6.1 T cells, consequences of 4 pg/ml (corresponding to postmenopausal levels) or 40 pg/ml
(premenopausal levels) of estradiol (E2) were analyzed on signalling proteins, CD3-zeta, JAK2, and JAK3, determined by
Western immunoblotting. These consequences were correlated with corresponding gene expressions, quantified by real
time-polymerase chain reaction. Tyrosine phosphorylation of CD3-zeta was defined by immunoprecipitation and
western immunoblotting following activation by T cell receptor (TcR) cross-linking. CD3-zeta expression and modulation
was also confirmed in T cells from pre- and postmenopausal women. To assess functional consequences, IL-2 production,
induced by PMA and ionomycin, was determined using enzyme-linked immunosorbent spot assay (ELISpot).

Results: At 40 pg/ml E2, the level of signalling protein CD3-zeta was elevated 1.57-fold, compared with cells exposed to
4 pg/ml E2. The CD3-zeta proteins also exhibited altered levels of activation-induced phosphorylation in the presence of
40 pg/ml E2 versus 4 pg/ml: 23 kD phosphorylated form increased 2.64-fold and the 21 kD form was elevated 2.95-fold.
Examination of kinases associated with activation signalling also demonstrated that, in the presence of 40 pg/ml E2, JAK2
protein expression was increased 1.64-fold (p < 0.001) and JAK3 enhanced 1.79-fold (p < 0.001) compared to 4 pg/ml.
mRNA levels for CD3-zeta, JAK2, and JAK3 were significantly increased following exposure to 40 pg/ml E2 (2.39, 2.01,
and 2.21 fold, respectively) versus 4 pg/ml. These findings were confirmed in vivo, since T cells from postmenopausal
women exhibited 7.2-fold diminished CD3-zeta expression, compared to pre-menopausal controls and this expression
was elevated 3.8-fold by addition of 40 pg/ml E2. Functionally, Jurkat cells exposed to 40 pg/ml E2 and activated exhibited
significantly elevated numbers of IL-2 producing colonies compared to 4 pg/ml (75.3 ± 2.2 versus 55.7 ± 2.1 colonies, p
< 0.0001).

Conclusion: Jurkat T cells exposed to 4 pg/ml E2 expressed significantly diminished activation signalling proteins,
correlating with reduced IL-2 production. Lower signalling protein levels appear to result from decreased CD3-zeta,
JAK2, and JAK3 gene expressions. These findings may provide a molecular basis for immunosenescence associated with
the postmenopausal state.
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Background
Immunosenescence, the gradual deterioration of immune
responsiveness is one of the age-associated phenomena
observed in humans [1,2]. While age-dependent defects
are seen in many cell types leading to immunosenescence,
defects in T cell function are the most dramatic and con-
sistently observed and are generally responsible for aber-
rations in protective immunity at both the cellular and
humoral levels [3,4]. Assessment of T cell responses from
elderly humans have indicated a dysregulation of intracel-
lular signal transduction capacities, reduced diversity of
the antigen recognition repertoire of T cell receptors,
impaired proliferation in response to antigenic stimula-
tion (antigens, mitogenic lectins, or antibodies directed
against CD3 components), and changes in cytokine pro-
files [5-11]. These age-associated immunological changes
make an individual more susceptible to infection, cancer,
age-associated autoimmune diseases, and, indirectly, to
atherosclerosis and Alzheimer's disease [12].

Two major changes in human T cell functions associated
with aging are diminished proliferation and decreased
secretion of interleukin-2 (IL-2) after activation via the T
cell receptor (TcR)/CD3 complex [5,13,14], although the
molecular mechanisms for these changes are not well
understood. Alterations in intracellular signalling trans-
duction have been postulated to mediate functional
defects exhibited by senescent lymphocytes [15]. Several
studies have suggested that aberrancies in early TcR/CD3
mediated signalling events may contribute to T cell func-
tion decline during aging [6,9,14,16]. CD3-zeta chains are
associated with the T cell receptor complex and generate
an activation signal in T lymphocytes in response to cross-
linking of antigen-binding sites by antigen or mitogens
[8,17]. Janus kinases (JAK) are a family of non-receptor
tyrosine kinases that transduce cytokine-mediated signals
via the JAK-STAT pathway in response to the IL-2 cytokine
activating the IL-2 receptor [17]. During T cell activation,
cytokines are produced that play a pivotal role in cellular
growth, differentiation and apoptosis. In order for signal
transduction of cytokine receptors to reach the nucleus,
two different types of molecules play important roles:
Janus kinases (JAK-1,-2,-3 and Tyk-2) and signal transduc-
ers and activators of transcription (STAT) proteins (STAT-
1,2,3,4,5,6). Phosphorylation of JAKs takes place follow-
ing the binding of cytokines and leads to activation of
STAT proteins.

Although immunosenescence affects both men and
women, it does not affect them equally. Men (all ages)
and postmenopausal women exhibit diminished T cell
immunity compared to premenopausal women [18]. The
decrease in androgens in men with aging may contribute
to their immunosenescence; however, the loss of T cell
function in men with aging is significantly less dramatic

than that observed in women [19-21]. Estrogen is not a
single component, but consists of multiple forms; the pri-
mary circulating forms are estrone (E1), estradiol (E2) and
estriol (E3). Estradiol binds both estrogen receptor-(ER)α
and ERβ with high and equal affinities, while estrone pref-
erentially binds ERα at a 5-fold higher affinity than ERβ
[22]. Recent studies have demonstrated that, while ERα
and ERβ exhibit distinct functions within immune cells,
both pathways are involved in mediating estrogen effects
[23]. In premenopausal women, the principal circulating
estrogen is ovary-derived estradiol, while in postmeno-
pausal women and men, estrone is the most abundant cir-
culating estrogen. In men, testosterone, which exhibits a
small age-related decrease, is the primary substrate for
estrogen production by peripheral aromatization of
androgens precursors; however, most studies failed to
observe any significant influence of age on total E2 levels
in men [21]. Since our study focuses on the menopause-
linked association of the loss of estradiol and T cell activa-
tion, the role of estrogens as an immunoregulator in men
is not addressed.

In women, many studies have demonstrated that the pres-
ence of estrogens is necessary for a robust immune
response to pathogens [24-27]; however, the more active
immune system in females can also lead to a predomi-
nance of diverse autoimmune diseases. In estrogen-defi-
cient states, such as menopause or surgical castration; the
immune system produces a blunted response. The
strength of the immune response in the presence and
absence of estrogen has been demonstrated in the murine
model [28,29]. Young female proestrus mice exhibited
enhanced immune responses compared to their male
counterparts, with estradiol levels appearing to be respon-
sible for the enhanced immune response. Aged female
rodents exhibited a reduced T lymphocyte response com-
pared to young female rodents when exposed to trauma-
hemorrhage [28]. Additionally, surgically castrated female
rats produced a diminished mitogen-induced T cell prolif-
eration response as well as decreased lymphocyte chemo-
taxis and IL-2 production compared to non-castrated
female rats [29]. These findings from murine models are
consistent with data collected from humans. Postmeno-
pausal women have also been shown to have diminished
immune responses. Estrogen-deficient women have been
shown to have poor anti-viral responses [25], reduced
proliferation of lymphocytes [7], exhibit reductions in B
cells and T helper cells [24], as well as T helper cell-derived
cytokines [27].

Since decreased levels of estrogens are associated with the
postmenopausal state and correlate with immunosenes-
cence, our hypothesis for an underlying mechanism of
blunted T cell responses exhibited in postmenopausal
women is that the diminished production of Th1
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cytokines, such as IL-2, is due to decreased activation sig-
nalling components, resulting from estrogen deficiency.
This hypothesis is supported by the observation that estro-
gen replacement treatment has been demonstrated to
restore T cell functions [26]. The objectives of this study
were to determine whether Th1 function, specifically IL-2
production, by an immortalized line of T lymphocytes
was diminished in a low estrogen environment and to
determine whether this decreased IL-2 production was
attributable to decreased gene transcription or decreased
mRNA translation of modulators of signaling compo-
nents, CD3-zeta, JAK 2, and JAK 3.

Results
Modulation of TCR activation signalling
To define the consequences of estradiol concentrations on
cellular levels of activation signalling proteins, Jurkat cells
were incubated in 4 pg/ml or 40 pg/ml of E2 and the rela-

tive levels of cellular CD3-zeta protein were determined
by Western immunoblotting. In the presence of 4 pg/ml
E2, CD3-zeta protein levels were 1.57-fold lower, com-
pared to CD3-zeta protein expressed in cells incubated in
40 pg/ml (Figure 1). This difference was statistically signif-
icant (p < 0.001). Since Jurkat cells may not represent the
optimal model to investigate the consequence of meno-
pausal estrogen decline, these results indicating dimin-
ished CD3-zeta levels in the postmenopausal
environment were confirmed using T cells isolated from
pre and postmenopausal women (Figure 2). When
defined immediately after isolation, CD3-zeta expression
was 7.2-fold lower in the postmenopausal group com-
pared to premenopausal women. When T cells from post-
menopausal women were incubated with 4.0 pg/ml E2, no
significant change was observed; however, when incu-
bated with 40.0 pg/ml E2 for 48 hours, a 3.5-fold increase
in CD3-zeta expression was observed. In contrast, when T

Modulation of Jurkat cell CD3-zeta protein expression by physiologic estradiol concentrationsFigure 1
Modulation of Jurkat cell CD3-zeta protein expression by physiologic estradiol concentrations. Expression of 
CD3-zeta protein expression by Jurkat cells incubated in the presence of either 4 pg/ml or 40 pg/ml estradiol for 48 hours 
defined by Western immunoblotting. The bar graph presents the quantitation of triplicate digitized gel images expressed as 
mean ± standard deviation. The insert shows a representative Western blot gel image.
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cells from premenopausal women were incubated with
4.0 pg/ml E2 for 48 hours, a 2.0-fold decrease in CD3-zeta
expression was demonstrated.

The earliest intracellular event to occur in response to TcR
binding of antigen is phosphoryl-tyrosine kinase-medi-
ated phosphorylation of the immunoreceptor tyrosine
activation motifs (ITAMs) of the CD3-zeta chains. The
phosphorylation of CD3-zeta protein was examined fol-
lowing activation by cross-linking the TcR (Figure 3). Two
prominent phosphorylated bands were observed follow-

ing activation: 21 kD and 23 kD. In the presence of 40 pg/
ml E2, these two bands exhibited enhanced levels of phos-
phorylation, compared to their counterparts at 4 pg/ml.
After adjusting to equal CD3-zeta protein, the 21 kD band
was observed to exhibit a 2.95-fold greater level of phos-
phorylation and the 23 kD was shown to be 2.64-fold
greater.

Modulation of activation-associated kinase expression
The effects of E2 levels of the expression of other compo-
nents associated with non-TcR mediated signalling, spe-

Modulation of normal T cell CD3-zeta protein expression by physiologic estradiol concentrationsFigure 2
Modulation of normal T cell CD3-zeta protein expression by physiologic estradiol concentrations. Expression of 
CD3-zeta protein expression by T cells isolated from either normal premenopausal or postmenopausal female volunteers, 
assayed immediately after isolation and following an incubation in the presence of either 4 pg/ml or 40 pg/ml estradiol for 48 
hours defined by Western immunoblotting. The bar graph presents the quantitation of triplicate digitized gel images expressed 
as mean ± standard deviation. The insert shows a representative Western blot gel image.
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cifically JAK 2 and JAK 3, were then examined. JAK2 is a
non-receptor type of protein tyrosine kinase associated
with the intracellular domains of cytokine receptors,
including IL-3, GM-CSF and erythropoietin. Jurkat cells,
exposed to 4 pg/ml estradiol, expressed 1.64-fold less JAK
2 when compared to those in 40 pg/ml estradiol (Figure
4, which was statistically significant (p < 0.001). JAK 3 is
a non-receptor type tyrosine kinase, involved in the sign-
aling of interleukins containing the γ c chain, such as IL-2,
IL-4, IL-7, IL-9, IL-15, and IL-21. JAK 3 protein expression
(Figure 5) was 1.79-fold lower in Jurkat cells incubated
with 4 pg/ml estradiol versus Jurkat cells incubated with

40 pg/ml (p < 0.0001). For each of these proteins, their
levels in 4 pg/ml were significantly greater than that
observed in 0 pg/ml estradiol: for JAK 2, p < 0.001; and
JAK 3, p < 0.05.

Consequences of estrogen on gene expression of signalling 
components
To identify whether reduced expression of signalling pro-
teins, in the presence of 4 pg/ml versus 40 pg/ml estradiol,
was the result of diminished gene expression, the levels of
mRNA for these signalling molecules were quantified by
real-time PCR. RT-PCR data demonstrated that expres-

Activation-induced phosphorylation of CD3-zeta at physiologic estradiol concentrationsFigure 3
Activation-induced phosphorylation of CD3-zeta at physiologic estradiol concentrations. Representative western 
immunoblotting results demonstrating the major phosphorylated CD3-zeta bands. Jurkat cells were incubated for 48 hours in 
0, 4 or 40 pg/ml estradiol and then activated by cross-linking the TcR. Cellular CD3-zeta was immunoprecipitated and the 
phosphorylated bands were identified using anti-pCD3-zeta as the primary antibody.
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sions of CD3-zeta, JAK2, and JAK3 mRNAs were signifi-
cantly decreased in Jurkat cells incubated in 4 pg/ml
estradiol compared to 40 pg/ml (Figure 6). Expression of
CD3-zeta was 2.39-fold lower in cells exposed to 4 pg/ml
compared to cells incubated with 40 pg/ml (p < 0.001).
There was also diminished levels of gene expression for
Janus kinases, JAK2 (2.01-fold) and JAK3 (2.21-fold), in T
cells incubated in 4 pg/ml compared to those incubated in
40 pg/ml (p < 0.001). Gene expressions for CD3-zeta and
JAK 3, incubated in 4 pg/ml E2 were not significantly dif-
ferent than that observed in cells exposed to 0 pg/ml (p >
0.05); while JAK 2 expression was significantly lower in 0
pg/ml E2 compared to 4 pg/ml (p < 0.05).

Functional effect of estrogen on induction of IL-2 
production
Since expressions of components associated with T cell
signalling were significantly lower in T cells incubated in

4 pg/ml estradiol, versus 40 pg/ml, are reduced levels of
activation signalling components sufficient to alter the
function of T cells? We defined the functional capacity of
T cells as the induction of IL-2, which has been demon-
strated to be diminished in postmenopausal women. Jur-
kat cells exposed to 4 pg/ml estradiol and activated with
PMA and ionomycin exhibited significantly fewer IL-2-
producing colonies of cells, when compared to Jurkat cells
exposed to 40 pg/ml estradiol and activated, 50.7 ± 4.9 vs.
73.7 ± 2.6 colonies, respectively (p < 0.0001, Figure 7).
Basal levels of IL-2 production were not significantly dif-
ferent in Jurkat cells, regardless of exposure to 0, 4 or 40
pg/ml estradiol (p = 0.0937), but the numbers of IL-2 col-
onies, following activation, with cells exposed to 4 pg/ml
were significantly greater than that observed with 0 pg/ml
estradiol (50.7 ± 4.9 versus 32.2 ± 6.9, p < 0.01).

Modulation of JAK 2 protein expression by physiologic estradiol concentrationsFigure 4
Modulation of JAK 2 protein expression by physiologic estradiol concentrations. Modulation of JAK 2 protein 
expression in Jurkat cells incubated in the presence of either 4 pg/ml or 40 pg/ml estradiol for 48 hours defined by Western 
immunoblotting. The bar graph shows the quantitation of triplicate digitized gel images expressed as mean ± standard devia-
tion. The insert shows a representative Western blot gel image.
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Discussion
A decline in the production of estrogens after menopause
affects various immune parameters. Prior to menopause,
both the cellular and humoral immune responses of
women are superior to those of men, at all ages [24].
However, compared to premenopausal women, both men
and postmenopausal women exhibit diminished lym-
phocyte proliferation and increased incidence of antibod-
ies against self-antigens [7,9,30,31]. Previous studies have
reported that menopause is associated with systemic and
local changes in T and B cell subpopulations and function
[24], as well as immunoregulatory cytokine production
[32]. Hormone therapy has been used to prevent or
decrease menopause-related symptoms and has been
reported to affect T cell reactivity [26].

A chief immunological hallmark of aging is reduced T cell
proliferation [26]. In women, this blunted immune

response is likely to be the consequence of deficient estro-
gen production [1-7,25-27]. This reduced T cell prolifera-
tion has been shown to be a predictor of early mortality in
the elderly [33]. Since induction of T cell proliferation is
induced by cross-linking the TCR/CD3 complex and
transducing the signal intracellularly through CD3-zeta,
the lower expression of CD3-zeta in the presence of 4 pg/
ml estradiol (compared to 40 pg/ml) observed in Figure 1
is consistent with the observation of diminished T cell
proliferation in postmenopausal women. There are two
major phosphorylated intermediates of CD3-zeta that
form upon T cell activation, which migrate at 21 kDa and
23 kDa. It has been shown that the 21-kDa form is consti-
tutively phosphorylated on the two membrane-distal
ITAMs in thymocytes and peripheral T cells and it associ-
ates with nonphosphorylated ZAP70 as a result of in situ
TCR interactions with peptide/MHC complexes. The 21
kDa intermediate can become phosphorylated at the most

Modulation of JAK 3 protein expression by physiologic estradiol concentrationsFigure 5
Modulation of JAK 3 protein expression by physiologic estradiol concentrations. Modulation of JAK 3 protein 
expression in Jurkat cells incubated in the presence of either 4 pg/ml or 40 pg/ml estradiol for 48 hours defined by Western 
immunoblotting. The bar graph presents the quantitation of triplicate digitized gel images expressed as mean ± standard devia-
tion. The insert shows a representative Western blot gel image.
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membrane-proximal ITAMs giving rise to the 23 kDa
form. In this study, we demonstrate that, not only is the
level of CD3-zeta decreased in cells exposed to 4 pg/ml
E2, but the phosphorylation of the CD3-zeta protein
chains is significantly diminished (Figure 3). Since this
zeta phosphorylation is critical for the transduction and
amplification of the activation signal, these consequences
of low E2 would lead to a blunted response.

Similarly, Janus kinases (JAK-1,-2,-3 and Tyk-2) play
important roles in signal transduction from cytokine
receptors to the nucleus after phosphorylation of JAKs
takes place following the binding of cytokines. Thus,
reduced expression of JAK 2 (Figure 4) and JAK 3 (Figure
5) in the presence of 4 pg/ml estradiol is consistent with
reduced signal transduction through cytokine receptors
observed in postmenopausal women. The lower levels of
CD3-zeta, JAK 2, and JAK3, resulting from exposure to 4
pg/ml estradiol, appears to be the result of decreased gene
expression (Figure 6). The levels and expressions of these
signalling components appear to be enhanced by the pres-
ence of estradiol, since their levels in both 4 pg/ml and 40
pg/ml estradiol were significantly elevated above those
observed at 0 pg/ml.

In this in vitro model, we demonstrated that T cells
exposed to 4 pg/ml estradiol (corresponding to a mean
postmenopausal level) produced significantly less IL-2
than the identical cells at 40 pg/ml estradiol (premeno-
pausal levels) (Figure 7). This is consistent with the obser-
vation of decreased production of anti-inflammatory
cytokines, including IL-2, by lymphocytes from postmen-
opausal women. Our results not only confirmed that T-
cells in low estrogen produced less IL-2 than T-cells in an
estrogen environment analogous to premenopausal lev-
els, but also established that this blunted immune
response resulted from lower expression of signalling
molecules, CD3-zeta, JAK 2, and JAK 3 in 4 pg/ml estra-
diol, versus 40 pg/ml. These signalling molecules are inte-
gral to the propagation of signals in T cells from activation
by antigens and IL-2 [8,31,32]. Higher expressions of
these signalling molecules in cells incubated with 40 pg/
ml would be expected to exhibit an augmented response
to receptor activation resulting in increased proliferation
and production of Th1 cytokines in premenopausal
women. The corollary of this would be that the decreased
expression of signalling molecules associated with expo-
sure to 4 pg/ml might account for the diminished prolif-
erative capacity of T cell in postmenopausal women and
the subsequent reduction in production of IL-2.

When the TcR/CD3 complex is exposed to premenopausal
E2 levels (40 pg/ml) and activated with PMA and ionomy-
cin, IL-2 is produced through a cascade of signalling
events. IL-2 is released from the T cell and can act in a
paracrine and autocrine effect to proliferate an immune

Suppression of CD3-zeta, JAK 2 and JAK 3 mRNA levels by physiologic estradiol concentrationsFigure 6
Suppression of CD3-zeta, JAK 2 and JAK 3 mRNA 
levels by physiologic estradiol concentrations. Sup-
pression of mRNA levels for CD3-zeta, JAK 2, and JAK 3 by 
exposure to 4 pg/ml versus 40 pg/ml estradiol quantified by 
real-time PCR. Results are presented as a mean ± standard 
deviation of cDNA concentration, resulting from duplicate 
runs.

Interleukin-2 (IL-2) production following induction by PMA and ionomycin in physiologic estradiol concentrationsFigure 7
Interleukin-2 (IL-2) production following induction by 
PMA and ionomycin in physiologic estradiol concen-
trations. IL-2 production by Jurkat cells exposed to 4 pg/ml 
estradiol for 48 hours and activated with PMA and ionomycin 
for 24 hours compared to cells exposed to 40 pg/ml estradiol 
and activated. The number of IL-2 producing colonies was 
determined by ELISPOT assay and the values plotted are 
mean ± standard deviation. The inset images present repre-
sentative assay plates for activated Jurkat cells in the pres-
ence of either 4.0 pg/ml E2 or 40.0 pg/ml E2.
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response. IL-2 activates the IL-2 receptor and causes Janus
kinases to autophosphorylate and lead to T cell prolifera-
tion and activation. However, when the TcR/CD3 com-
plex is exposed to postmenopausal E2 levels (4 pg/ml) and
activated with PMA and ionomycin, there is decreased
production of CD3-zeta and Janus kinases, which leads
not only to diminished IL-2 production, but also to poor
signal transmission. Decreased IL-2 production is accen-
tuated by poor transmission of IL-2 receptor signals as a
result of decreased expressions of Janus kinases expressed
in lower estrogen.

Conclusion
While immunosenescence affects both men and women,
the T cell functionalities of men, regardless of age, are less
than that observed in premenopausal women and in gen-
eral, do not exhibit the same age-related declines observed
in women [34]. It has been suggested that, at least in terms
of bone preservation, vascular function, and the central
nervous system, local tissue levels of estrogens rather than
circulating levels are the critical determinants [35,36]. A
major physiological role for androgens in men (and post-
menopausal women) may be as a circulating pool for
local tissue estrogen production. In adipose tissue, vascu-
lar endothelium, bone and brain, aromatase converts
androgens to estrogens. In contrast to the ovaries, extrago-
nadal tissues lack the capacity to synthesize C19 steroids
and thus their generation of adequate local estrogens
depends upon the availability of C19 precursors [35,36].
Since the decline in circulating testosterone with age in
men is relatively small and their levels are an order of
magnitude greater than that observed in postmenopausal
women (12 nmol/L in men vs. 0.6 nmol/L in postmeno-
pausal women), several studies have indicated that circu-
lating testosterone in men can be efficiently converted to
estrogens in the extragonadal tissues to produce local
estrogen concentrations sufficient to activate estrogen
receptors [35,36]. In contrast, for women, there is a signif-
icant age-dependent decline in androgens, in addition to
the decline in ovary-derived estrogens and together these
may lead to traditional pathologies of estrogen deficiency
[37]. Further, at the molecular level, studies have shown
that estrogen receptor activation is distinct between men
and women, as women exhibit a significantly distinct
level of ER-associated coactivators [38]. It should be noted
that, in studies using estrogen-containing therapies
(unopposed estrogen or estrogen plus progestins),
reversal of T cell unresponsiveness was observed
[26,27,39]. These findings point to the critical role of cir-
culating estrogens (or estrogen precursors) in maintaining
immune responses in women.

Diminished levels of estrogens associated with meno-
pause could lead to a blunted immune response that
could increase susceptibility to pathogens and lead to
higher incidences of mortality [33,40]. Previous studies

reported that postmenopausal women display a greater
prevalence of sepsis [41,42]. Clearly, our studies will need
to be expanded to longer incubation periods, multiple
estradiol concentrations and inclusion of additional
estrogens, such estrone. Our current studies are addressing
these observations in vivo using pre- and post-menopausal
women, as well as women undergoing hormone therapy;
however, the role of a single determinant cannot be
appropriately evaluated using this approach and the
number of signalling components and functionality will
also be limited. Under physiologic conditions, transcrip-
tional activation of the IL-2 gene by estrogens can occur
and by binding to cell surface and intracellular receptors,
estrogens can act synergistically with ligands to enhance
IL-2 transcription [43]. Discovering the mechanisms by
which the immune system may be blunted in an estrogen-
deficient state may lead to future therapies, to aid post-
menopausal women in becoming less prone to pathogens
and to prevent the development of autoimmune and neo-
plastic diseases.

Methods
Cell lines
Jurkat E-6.1 cells, established from a human T cell lym-
phoma, were obtained from the American Type Culture
Collection (Rockville, MD). This T cell line was routinely
grown in RPMI 1640 medium supplemented with 10%
fetal bovine serum, 0.1 mM nonessential amino acids, 1
mM sodium pyruvate, 200 mM L-glutamate, 100 μg/ml
streptomycin and 100 IU/ml penicillin in a humidified
5% CO2 chamber at 37°C. Prior to estrogen studies, cells
were grown in RPMI 1640 medium without phenol red
but containing 10% charcoal-treated fetal bovine serum
for a minimum of 72 hours. Subsequently, Jurkat cells
were incubated in either 4 pg/ml or 40 pg/ml estradiol
(E2) for 48 hours. Based on recent studies, the 4 pg/ml
estradiol level was used to correspond to the postmeno-
pausal levels (midpoint within the observed postmeno-
pausal range, [44]), while 40 pg/ml estradiol represents a
level associated with the mean of follicular and luteal
phases of premenopausal women [45]. Cell viability was
evaluated by trypan blue exclusion and all cultures uti-
lized for this study were > 95% viable. All methods were
performed in triplicate or quadruplicate to ensure repro-
ducibility and accuracy.

Patient samples
Heparinized blood specimens (10 ml) were obtained
from premenopausal (cycling) women who were not
pregnant and postmenopausal women, under an
informed consent approved by the University Human
Studies Committee of the University of Louisville. All
blood samples were obtained from volunteers in the pri-
vate office and clinics of the Department of Obstetrics and
Gynecology at the University of Louisville. For premeno-
pausal women, the mean age was 29.4 ± 3.8, while for
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postmenopausal women, the mean age was 54.4 ± 1.8. To
assess, the level of CD3-zeta signalling molecules, T cells
were isolated by the blood samples by magnetic activated
cell sorting (MACS). Normal human PBMC were obtained
from normal donors by isolation on Ficoll-Hypaque gra-
dients. Untouched CD3-positive cells were obtained from
the PBMC population by using a pan T cell isolation kit
(Miltenyi Biotec, Auburn, CA) and the manufacturer's
instructions.

Expression of signalling proteins, CD3-zeta, JAK2 and JAK3
The expressions of CD3-zeta, JAK2, and JAK3 proteins
were quantified by Western immunoblotting. Jurkat cells
or normal T cells incubated with media containing either
4 pg/ml or 40 pg/ml of E2. After 48 hours, the cells were
centrifuged and the cell pellet was washed and used for
protein analysis. To assess for the expressions of T cell sig-
nalling proteins, the cell pellet was lysed using 50 mM
HEPES (pH 7.2), 150 mM NaCl, 5 mM EDTA, 1 mM
sodium orthovanadate, 2.5% Triton X-100, 200 μg/ml
trypsin/chymotrypsin inhibitor, 200 μg/ml chymostatin,
and 2 mM PMSF. The cell lysate was assayed for protein by
the Bio-Rad protein assay. The modulation of signalling
proteins was analyzed by Western immunoblot using a
15% SDS-PAGE gel. The proteins were electrophoretically
separated by the method of Laemmli [46], analyzed by
Western immunoblot as previously described [47], and
probed overnight at 4°C with mouse monoclonal anti-
CD3-zeta, anti-JAK2 and anti-JAK 3 antibodies (Santa
Cruz Biotechnology, Santa Cruz, CA) as the primary anti-
bodies. As an additional loading control, blots were
probed using rabbit polyclonal anti-GADPH (Santa Cruz
Biotechnology, Santa Cruz, CA). The presence of reactive
bands was identified by incubation with peroxidase-con-
jugated anti-mouse immunoglobulins as the secondary
antibody. The bound immune complexes were visualized
by enhanced chemilluminescence (ECL, Amersham Bio-
sciences, GE Healthcare, Piscataway, NJ) and quantitated
by densitometry (Un-Scan-it software; Silk Scientific,
Orem, UT).

CD3-zeta activation
To define a functional consequence of estrogen levels cor-
responding to postmenopausal levels, initially the trans-
duction of an activation signal was assayed as
phosphorylation of CD3-zeta. Activation by TcR-CD3
ligation was performed by binding of 1 μg/ml anti-CD3
monoclonal antibody, UCHT-1 (functional grade, eBio-
science, San Diego, CA) to Jurkat cells at 5 × 105/ml for 15
min at 4°C. Additional cross-linking was achieved by
incubating these cells with rabbit anti-mouse Ig (4 μg/ml)
for 5 minutes at 37°C. Cells were then lysed in Tris-buff-
ered saline, pH 7.2, 0.2 mM EDTA, 0.5% Triton X-100, 0.5
mM DTT, 20 mM β-glycerophosphate, 1 mM sodium
orthovanadate, 5 mM sodium fluoride, 10 mM PMSF, 1

μg/ml leupeptin, and 1 μg/ml aprotinin for 30 min at
4°C. Lysates were centrifuged at 14,000 × g for 10 min at
4°C and supernatants were pre-clarified with protein A-
Sepharose for 1 hour at 4°C. To isolate CD3-zeta protein,
the clarified lysates (60 μg protein for Jurkat cells exposed
to 40 pg/ml and 90 μg for those incubated with 4 pg/ml
to correct for the diminished levels of CD3-zeta protein)
were incubated with agarose-conjugated anti-CD3-zeta
(Santa Cruz Biotechnology) with constant mixing over-
night at 4°C. The complexes were pelleted by centrifuga-
tion at 10,000 × g for 10 minutes and the pellets washed
with Tris-buffered saline containing 1% Triton X-100. The
immunoprecipitates were analyzed by SDS-PAGE and
immunoblotting using the mouse anti-human p-CD3-
zeta (C415.9A) antibody (Santa Cruz Biotechnology,
Santa Cruz, CA). The bands were analyzed as described
above.

Induction of IL2 production
To assess the consequence of estrogen on T cell function,
induction of IL-2 was used as a marker. Production of IL-
2 was analyzed using an enzyme-linked immunosorbent
spot assay (ELISPOT) (Pierce Chemical Co., Rockford, IL).
Ninety-six-well ELISPOT plates pre-coated with antibod-
ies for IL-2 were used. Jurkat cells (106 cells/ml) were
added to each well and incubated with and without 50
ng/ml PMA and 1 μg/ml ionomycin for 24 hours. After 24
hours, plates were emptied and washed twice with PBS
and twice with PBS containing 0.05% Tween 20. Bioti-
nylated anti-human IL-2 monoclonal antibodies, diluted
to 1 μg/ml, were added and plates were incubated for 2
hours at room temperature. The contents were then dis-
carded, the wells washed, and diluted Streptavidin-alka-
line phosphatase solution was added to each well. The
color reaction developed at room temperature in the dark
for approximately 20 minutes. The plates were rinsed with
distilled, deionized water, and allowed to dry upside
down at room temperature for 60–90 minutes prior to
analysis. Once the membrane was dry, the number of IL-
2 secreting colonies, indicated as red spots, was manually
enumerated using a dissection microscope and the
median value of the quadruplicate wells calculated.

CD3-zeta, JAK 2, and JAK 3 gene expression quantification
Real time-polymerase chain reaction (real-time PCR) was
performed to quantify CD3-zeta, JAK2, and JAK3 gene
expression. RNA was isolated using the TRIZOL reagent.
The concentration of RNA was determined by measuring
the absorbance in the spectrophotometer at 260 nm
(A260) and 280 nm (A280). The purified RNA was stored at
-70°C. cDNA was prepared from isolated RNA samples.
This procedure was performed by the ReactionReady First
Strand cDNA synthesis kit, as described by the manufac-
turer's instructions (SuperArray Bioscience Corp, Freder-
ick, MD). cDNA was added to the real-time PCR mixture
Page 10 of 12
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containing SYBR green and appropriate primer set. Spe-
cific primers for CD3-zeta, JAK2, and JAK3 were obtained
from SuperArray Bioscience Corporation (Frederick, MD).
Primers for GAPDH were included as an internal control.
All determinations were performed twice with the Light-
Cycler 2 (Roche Diagnostics, Indianapolis, IN). Data anal-
ysis was performed with the standard curve method. Since
mRNA level is defined following its transcription into
cDNA, the levels of gene expression are presented as
cDNA concentration.

Statistical Analysis
Incubations of Jurkat cells with various E2 concentrations
were performed in three several experiments. Western blot
analysis of each signaling protein was performed in dupli-
cate from each individual experiment. Western blot
images for CD3-zeta, JAK2, and JAK3 were digitized and
statistical analysis performed on the digitized images
using the one-way ANOVA with Bonferroni's multiple
comparison test. RNA was isolated from each condition
from each of the three separate studies. RT-PCR quantita-
tions of mRNA levels were performed in duplicate. ELIS-
pot analysis was performed on cells from each of the 3
separate experiments and each E2 concentration was deter-
mined in quadruplicate for each ELISpot assay. Statistical
analysis of Il-2 production and quantification of cDNA
through real-time PCR was performed using the student's
t-test. A p value of < 0.05 was considered statistically sig-
nificant.
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