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Abstract

Background: While influenza vaccination results in protective antibodies against primary infections, clearance of
infection is primarily mediated through CD8" T cells. Studying the CD8" T cell response to influenza epitopes is
crucial in understanding the disease associated morbidity and mortality especially in at risk populations such as the
elderly. We compared the CD8" T cell response to immunodominant and subdominant influenza epitopes in HLA-
A2" control, adult donors, aged 21-42, and in geriatric donors, aged 65 and older.

Results: We used a novel artificial Antigen Presenting Cell (aAPC) based stimulation assay to reveal responses that
could not be detected by enzyme-linked immunosorbent spot (ELISpot). 14 younger control donors and 12
geriatric donors were enrolled in this study. The mean number of influenza-specific subdominant epitopes per
control donor detected by ELISpot was only 1.4 while the mean detected by aAPC assay was 3.3 (p = 0.0096).
Using the aAPC assay, 92% of the control donors responded to at least one subdominant epitopes, while 71% of
control donors responded to more than one subdominant influenza-specific response. 66% of geriatric donors
lacked a subdominant influenza-specific response and 33% of geriatric donors responded to only 1 subdominant
epitope. The difference in subdominant response between age groups is statistically significant (p = 0.0003).

Conclusion: Geriatric donors lacked the broad, multi-specific response to subdominant epitopes seen in the
control donors. Thus, we conclude that aging leads to a decrease in the subdominant influenza-specific CTL
responses which may contribute to the increased morbidity and mortality in older individuals.

Background
In the United States, it is estimated that more than
30,000 people die each year as a result of influenza
infection with over 90% of deaths in individuals over age
65 [1,2]. This is due, in part, to the diminished immune
response in the elderly [3-7]. While antibodies protect
against development of primary influenza infection,
clearance of the infection is chiefly mediated through
CDS8* T cells [8,9]. It has been shown that CD8" T cells
are protective against influenza infection and are critical
for the clearance of influenza infection in animal models
[10-15]. Thus, it is necessary to study host CD8" T cell
response to influenza epitopes for a better understand-
ing of susceptibility and changes that occur with aging.
In influenza, the HLA-A2 restricted response to the
matrix protein peptide, M1sg ¢4, is considered to be
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immunodominant [16-18]. However, recent studies of
influenza have also shown a wide array of other epi-
topes, indicating that infection with influenza A induces
a broader response [16,19-21]. Based on those studies
[21], an alternative definition has been proposed of the
hierarchy of dominant and subdominant epitopes for
human immune responses based on the frequency and
magnitude of response [22].

To assess the breadth and depth of influenza-specific
immune responses, we compared enzyme-linked immu-
nosorbent spot (ELISpot) analysis to a novel artificial
Antigen Presenting Cells (aAPC) based stimulation. We
found that the aAPC based stimulation assay was a
more sensitive method to detect the breadth of influ-
enza-specific responses. Using the aAPC assay to stimu-
late influenza-specific CD8" T cells ex vivo from
younger control donors, aged 21-42, and geriatric
donors, over the age of 65, we found responses against
the immunodominant influenza M1sg ¢ peptide in both
control and geriatric groups. Responses generated
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against the subdominant peptides, PB1433.451, NS1123.132,
NA31.230, NA75 84, PAyg 54, and PAyys 533 were primar-
ily seen in the control group. In contrast, the geriatric
donors lacked the broad, multi-specific response to the
subdominant influenza epitopes. These results indicate
that aging leads to a narrowed influenza-specific subdo-
minant memory CD8" T cell repertoire.

Results

Precursor frequency of influenza-specific cells

The precursor frequency of influenza-specific T cells
was determined by an IFNg ELISpot assay on PBMC
directly ex vivo. We analyzed the response to HLA-A2
restricted immunodominant and six subdominant influ-
enza-specific peptides (Table 1) in seven of the control
donors, aged 21-42 (Table 2). Few donors had detectable
CD8" T cell precursor levels to multiple influenza-speci-
fic subdominant epitopes (Figure 1). Only four out of
seven donors showed a significant (p < 0.05) response to
PB1413.421, while three donors responded to PA 4454 and
two donors to NA;5.5, One donor responded to
NS1153.132 or PAjys5.533, and no donors responded to
NAj31.039 (Figure 1B). Based on this and Gianfrani et
al’s study [21], we initially estimated a limited subdomi-
nant repertoire in normal control donors.

Stimulation of subdominant influenza-specific CD8* T
cells using aAPC

Since the precursor frequencies for the subdominant CD8"
T cell specific response may be below the level of detection
by ELISpot, we compared the ELISpot assay to an aAPC
based stimulation assay initially developed for stimulation
of viral CMV-immunodominant antigen-specific cells [23].

Table 1 Influenza peptides separated by pool

Peptide name Peptide Sequence

Subdominant Peptides Pool 1

PBl43u1 @ . NMLSTVLGV
NA231230 CYNGSCFTV
PAs233 > © SLENFRAYV
Subdominant Peptides Pool 2

NST123132 © IMDKNIILKA
NAs.gq * © SLCPIRGWAI
PAgg s> FMYSDFHFI
Immunodominant

M1 5566 GILGFVFTL

Influenza peptides separated into pools

Source- ® Peptides were selected from Gianfrani et al. [21], b Peptides were
selected from Daly et al.[40], © Peptides were selected from Kasprowicz et al.
[41].

9 Indicates peptides were found to be completely conserved in all strains of
influenza, Gianfrani et al. [21].

¢ Indicates peptides were found to have one conservative amino acid
substitution in 95% or more of the influenza strains tested, Gianfrani et al.
[21].
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Table 2 Demographic characteristics of Control Donors

Donor Age Sex Last Flu vaccination
(years prior)

@ 25 M Never

C2 27 F 1

a 25 M Never

C4 42 M 2

(€5 34 F 1

cé6 31 M 2

c7 30 M 2

c8 30 M 1

9 35 M 1

c10 32 M >5

cn 26 M 1

12 32 M 1

c13 30 M 1

C14 30 F 5

Demographic characteristics of Control Donors

Here, we tested if this approach would be useful in stimu-
lating influenza subdominant-specific CD8" T cells. For
these studies, we modified the protocol by combining indi-
vidually peptide-pulsed aAPC into pools of preloaded pep-
tide-pulsed aAPC and stimulated purified CD8" T cells
with the pools of aAPC (Table 1). The pools of aAPC were
plated at a 1:1 ratio to CD8" T cells. After 3 rounds of
weekly stimulation, we analyzed our cultures by HLA-mul-
timer staining and intracellular cytokine staining (ICS).

Using aAPC based stimulation, we were able to gener-
ate peptide-specific CD8" T cells against the immuno-
dominant, M1sg 66 epitope, as well as the subdominant
influenza-specific epitopes. Donor C1 and C7, represen-
tative examples, had approximately 15% and 77% M1lsg.
s6-positive CD8" T cells, respectively, based on IFNg
ICS (Figure 2A, left panels). These cells were functional
as the IFNg expressing population also coexpressed
degranulation marker, CD107a (data not shown).

aAPC also stimulated expansion of the subdominant
epitope-specific CD8" T cells. From the pool 1 aAPC
cultures, 51% of Donor C1’s and 56% of Donor C7’s
CD8" T cells were specific for PBl4;3.45; (Figure 2A,
middle panels). Similarly, PA6.54-specific CD8" T cells
were obtained using aAPC loaded with pool 2 peptides
for both representative donors, C1 and C7 (Figure 2A,
right panel). We did not find any donors that stained
positive by multimer, but did not express IFNg by ICS
(data not shown). Therefore, for standardization and
comparison purposes, we analyzed all donors by ICS.

To determine if the aAPC based stimulation was
expanding the memory CD8" T cell population or the
naive population, we isolated naive CD8" T cells from
control donors. After three rounds of stimulation, the
aAPC expanded subdominant epitope specific cells from
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Figure 1 Precursor frequencies of subdominant influenza-specific CD8" T cells by ELISpot. CD8" T cells were obtained from control donor
PBMCs and analyzed by ELISpot directly ex vivo. A. Shows a representative example of ELISpot wells. T2 cells were pulsed with either PB1413.421
peptide, M1sg.45 peptide, or no peptide. CD8* T cells were plated at a 1:1 ratio with peptide pulsed T2 cells. B. Summary of IFNg secreting CD8"
T cells determined using an ELISpot assay. The results are an average mean of triplicates with background subtracted. All displayed data points

are statistically significant (p < 0.05), with a cut off value of 5 SFC/100000 CD8" T cells.

non-selected total CD8" T cells isolated from PBMCs
(Figure 2B). However, the aAPC did not expand any
subdominant epitope specific cells from the naive-
selected CD8" T cells (Figure 2C). Donor C1, a repre-
sentative example, had approximately 54% PB1-positive
CD8" T cells, based on IFNg ICS after 3 weeks of sti-
mulation by pool 1 aAPC (Figure 2B). In contrast, no
influenza-specific cells could be expanded from the
naive CD8" T cells (Figure 2C).

Influenza-specific memory CD8" T cell response in
younger donors is broad and multi-specific

The aAPC based stimulation revealed a broad CD8* T
cell response to subdominant influenza-specific

epitopes in the control donors (Figure 3A). Each
donor has their own subdominant CD8" T cell
response profile, and many donors responded to mul-
tiple subdominant epitopes. Several subdominant epi-
topes, PBly13.421, NS1193.130, and PAgg 54, elicited a
response from a majority of the donors. Furthermore,
the magnitude of the response to the subdominant
and immunodominant epitopes varied between each
donor (Figure 3A).

Pools of peptide-loaded aAPC were able to stimulate
multiple antigen-specific T cell populations simulta-
neously. Depending on the donor, 2 or 3 different sub-
dominant CD8" T cell responses could be seen within
each pool. For example, pool 1 stimulated three
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Figure 2 IFNg secretion by antigen-specific immunodominant and subdominant CD8* T cells. CD8" T cells were stimulated weekly for 3
weeks with M1sg.46-aAPC (left panels), with pool 1 aAPC, which included NA»3;.530-aAPC, PA555.033-aAPC, and PB1413.421-aAPC (middle panels), or
with pool 2 aAPC, which included NA;s g4-aAPC, PA4s 54-aAPC, and NS1+5313,-aAPC (right panels). A) IFNg production by aAPC stimulated CD8* T
cells from donor C1 and donor C7 after three rounds of stimulation as determined by ICS. CD8" T cells were stimulated with unpulsed T2 cells,
M1sg.66 pulsed T2 cells, PB1413.421 pulsed T2 cells, or PAsg.s, pulsed T2 cells at a 1:1 ratio. B and C) Naive CD8" T cells were separated and then
stimulated weekly for three weeks with pool 1 aAPC. B) IFNg production by aAPC stimulated memory CD8"* T cells from donor C1. CD8" T cells
were stimulated with unpulsed T2 cells or PB1413.421 pulsed T2 cells. C) IFNg production by aAPC stimulated naive CD8" T cells from donor C1.
Naive selected CD8" T cells were stimulated with unpulsed or PB1413.451 pulsed T2 cells.

different antigen-specific CD8" T cells from Donors C2
and C3, and pool 2 stimulated two antigen-specific CD8
" T cells from the same donors (Figure 3A).

aAPC based stimulation uniquely revealed responses
not detected by ELISpot. Using single blood donations
from a set of seven donors, we compared the sensitiv-
ity of the ELISpot assay to aAPC based stimulation
assay. Both methods were comparable in detecting the
immunodominant M1 specific responses; 100% of
donors responded by aAPC stimulation and 83% by
ELISpot (Figure 3B). However, the detection of subdo-
minant specific T cells by aAPC expansion was signifi-
cantly greater than their detection by ELISpot. The
mean number of subdominant epitopes per donor
detected by ELISpot was only 1.4 while the mean
detected by aAPC assay was statistically higher at 3.3,
p = 0.0096 (Figure 3C). Therefore, we based our reper-
toire comparison using the aAPC based stimulation
assay.

Influenza-specific CD8" T cell responses in geriatric
donors

We determined the breadth of influenza-specific CD8"
T cells in older geriatric adults, aged 65 and above
(Table 3). 11 of the 12 geriatric donors had responses
specific for the immunodominant M1sg ¢ epitope (Fig-
ure 4). In contrast, geriatric donors lacked responses to
most of the subdominant influenza peptides seen in the
control group (Figures 3A and 4). Of the donors who
did elicit a subdominant response, the breadth of their
response was limited (Figure 4). As noted earlier, in the
control, younger group, donors responded to as many as
five of the six subdominant epitopes (Figures 3A and
5A). The mean number of subdominant epitopes per
donor detected in the geriatric group was only 0.33,
compared to the mean of 2.5 detected for control
donors, p = 0.0003 (Figure 5B). Similarly, we separated
the geriatric donors into two groups, under 80 and 80
and older, and compared the number of subdominant
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Figure 3 Younger donors’ CD8" T cell response to influenza A epitopes. A) Frequency of peptide specific cells from control donors after
three weeks of aAPC stimulation as determined by ICS for IFNg secretion and analyzed by flow cytometry. A positive result is defined as a clear
population of cells secreting IFNg 5 fold above background. Background levels were determined by stimulating CD8" T cells with unpulsed T2
cells, as described in Figure 2. Figure 2 is a representative example of background levels for all donors. All data points displayed are 5 fold above
background. B) Comparison of the immunodominant response in control donors. The percent of positive donors with peptide specific cells is
compared to the percent of positive donors for IFNg secretion by ELISpot at wk 0 from control donors. C) Comparison of aAPC based
stimulation to ELISpot assays for the subdominant influenza-specific responses.

responses per donor in each group to the control significant by Fisher’s exact test, p = 0.0026 (Figure

donors’ subdominant response. Both groups were statis-
tically different from the control group with p = 0.01 for
under 80 and p = 0.002 for donors above 80 years old
(Figures 5C and 5D).

To further verify the difference in response to subdo-
minant epitopes between the control and geriatric
donors, we grouped the responses to subdominant epi-
topes into no responses or one or more subdominant
responses. Geriatric donors lacked a subdominant
response and this was determined to be statistically

5E). None of the geriatric donors had multi-specific
subdominant responses. Of note, Donors E2, E3, E4,
and E9 responded to the subdominant epitopes NS1 or
PA46, epitopes that were highly prevalent in the con-
trol group but none responded to another prevalent
subdominant epitope, PB1,;3 451 (Figures 3A, 4 and
5A). Thus, in contrast to the broad, multi-specific sub-
dominant response seen in control donors, there was a
substantially more restricted response in geriatric
donors.
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Discussion

Donor Age Sex Last Flu vaccination In contrast to the broad CD8" T cell response to subdo-
(years prior) minant influenza epitopes seen in younger donors, we
E1 83 M 2 found a restricted response in geriatric donors. Our
E2 83 F 2 work is the first to document losses in subdominant
E3 68 M 1 influenza-specific memory responses that occur with
E4 67 F >5 aging in humans. Our findings are consistent with pub-
E5 72 M 1 lished studies that report that geriatric individuals main-
E6 70 M 1 tain immunodominant, M1sg_¢¢ specific, CD8" T cells
E7 86 M >3 [24-26], but extend that work significantly as we report
£8 86 M 1 that the lack of breadth of subdominant influenza-speci-
E9 83 M 1 fic T cells in the geriatric population even to the highly
E10 85 M 1 prevalent subdominant epitopes like PBl,;3.49;. In
ET1 87 M 1 younger donors, we also found that the majority of the
E12 69 M 2 donors had T cells that were specific for multiple
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Figure 4 Geriatric donors’ CD8" T cell response to influenza A epitopes. A) Frequency of peptide specific cells from geriatric donors after
three weeks of aAPC stimulation as determined by ICS for IFNg secretion and analyzed by flow cytometry. Background levels were determined
by stimulating CD8™ T cells with unpulsed T2 cells, as described in figure 2. Figure 2 is a representative example of background levels for all
donors. All data points displayed are 5 fold above background.
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Figure 5 CD8" T cell immune response to subdominant influenza epitopes in the younger and older populations. A) Comparison of
CD8" T cell response between control donors and geriatric donors based on IFNg secretion by ICS after three weeks of aAPC stimulation. Filled
bars are control donors, lined bars are geriatric donors. B) Comparison of the number of responses to subdominant epitopes per donor,
comparing control to geriatric donors. Positive responses were determined by ICS for IFNg secretion after three weeks of aAPC stimulation. C)
Comparison of number of responses to subdominant epitopes per donor, comparing control to geriatric donors under the age of 80. D)
Comparison of number of responses to subdominant epitopes per donor, comparing control to geriatrics over the age of 80. E) Comparison of
responding donors to either no subdominant influenza-specific epitopes or 1 or more subdominant influenza-specific epitopes. This difference is

subdominant epitopes which was larger than predicted,
Gianfrani et al. [21]. Our study shows a narrowing of
the CD8" T cell repertoire associated with ageing.

aAPC based stimulation detected influenza-specific T
cells that were below the limits of detection by ELISpot
assays. Using this novel technique, we were able to sig-
nificantly enhance our ability to probe the breadth and
depth of the human CD8" T cell repertoire against
influenza. Interestingly, the aAPC stimulation assay
revealed that three of the six subdominant influenza epi-
topes, PB1l413.421, NS1153.132, and PAyg_54, induce a
response in the many of the control donors. These
responses are very low frequency events which were
only effectively detected in the aAPC assay. It would be
interesting to investigate why T cells specific for these
epitopes are present at such low precursor frequencies,

as their prevalence may implicate an important role in
the CD8" T cell immune response to influenza.

Our aAPC based stimulation assay overcomes limita-
tions associated with other assays. Precursor frequency
analysis of antigen-specific cells can be performed by a
variety of assays including ELISpot and tetramer stain-
ing. As with all assays, they are limited by the number
of events being analyzed and the background activity
associated with each assay. In the aAPC assay, CD8" T
cells are repetitively stimulated to expand antigen speci-
fic T cells to a level that is detectable by multiple meth-
ods, such as tetramer staining, ICS or ELISpot. In the
process of the repetitive stimulation we lose information
on the exact precursor frequency, but the aAPC stimula-
tion allowed detection of a wider breadth of antigen spe-
cific T cells than were previously detected. By using the
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pools of aAPC, as opposed to individually peptide-
pulsed aAPC per stimulation, these experiments were
logistically feasible with a modest, 40 cc, blood donation.

The use of only moderate amounts of blood becomes
a central issue in the analysis of the at risk geriatric
population. Within the geriatric population the amount
of blood drawn is restricted and volunteers’ consent for
multiple blood draws is limited. Thus, by using a single,
modest blood draw we were able to recruit and enroll
more geriatric donors.

Age-associated T cell repertoire changes have been
previously reported. The diminished immune response in
geriatric individuals is often attributed to thymic involu-
tion, which leads to a reduction in the thymic output of
naive T cells [27]. However, since the aAPC based stimu-
lation assay only expands the memory CD8" T cell popu-
lation (Figure 2B and 2C), the lack of subdominant
specific T cells in the geriatric group is likely due to
alterations in the memory CD8" T cell population and
not a result of naive CD8" T cell loss. Additionally, the
M1 proliferative response was seen in all but one of the
geriatric donors. Therefore, intrinsically all donors’” T
cells were capable of proliferating. Thus, we concluded
that the precursor frequency of the subdominant influ-
enza-specific responses, not their ability to proliferate, is
selectively diminished in the older population.

Changes in the functional T cell repertoire are also
known to occur in cytomegalovirus (CMV)-specific T
cell responses in the geriatric population. Over time indi-
viduals lose their CD8" T cell diversity and their immune
response to CMV is narrowed [28-30]. CMV is a virus
that persists latently in the body and the narrowing of
the CD8" T cell response is believed to be due to the per-
sistence of CMV antigen throughout life. In contrast,
influenza is not a latent virus, however individuals may
be vaccinated and/or infected with influenza multiple
times during their lifetime. These multiple exposures
may lead to a shift in the T cell repertoire and a narrow-
ing of the immune response that we observed in the ger-
iatric population. Alternatively, the loss of the influenza-
specific subdominant T cells in the geriatric donors
might be a result of original antigenic sin. Original anti-
genic sin occurs when there are multiple infections with
similar, but not identical viruses. The immune system is
tricked into believing that the memory CD8" T cells pro-
duced in the initial infection are sufficient to ward off the
infection with a similar virus and this leads to a narrow-
ing in the immune response [31,32]. Lastly, narrowing of
the CD8" T cell response may be attributed to heterolo-
gous immunity. Heterologous immunity occurs when
memory CD8" T cells are activated during a secondary
infection in response to a different virus [33-35]. It is
possible that non-influenza viruses may induce cross-
reactive responses to the immunodominant M1s5g_¢g
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specific CD8" T cells, which leads to greater percentage
of M1sg_¢6 specific CD8" T cells, and a narrowing in the
subdominant CD8" T cell immune response.

In contrast to the studies done in CMV, Boon et al.
[36]studies indicate that the percentage of influenza-
specific T cells does not change with age. In that work
the authors looked at a global response to influenza by
infecting PBMC directly ex vivo and looking for cyto-
kine secretion by ICS [36]. They found no correlation
with age and percentage of IFNg secreting CD8" T
cells. However, they were unable to directly look at
epitope specific responses. Based on the experimental
design, we believe, that their analysis is likely focused
on the immunodominant epitopes in both the young
and older donors, since the precursor levels of subdo-
minant-specific CD8" T cells are much lower, it is pos-
sible that the subdominant response is below their
limits of detection. This highlights the importance of
also studying the subdominant antigen-specific
responses.

Conclusions

Using the aAPC stimulation assay we were able to sig-
nificantly enhance the ability to probe the depth of the
human CD8" T cell repertoire against influenza in
younger control and geriatric donors. We observed that
all young donors had T cells specific for the immunodo-
minant peptide, and that most had T cells that were
specific for multiple subdominant epitopes as well.
Compared to the broad responses seen in the younger
control donors, there was a near total absence in the
geriatric donors with maintenance of only the immuno-
dominant M1sg_¢6-specific response.

Our results have potential implication for vaccine
design targeted at boosting influenza-specific CD8" T
cells responses as it has been suggested that vaccine
protection in geriatric donors correlates better with T
cell responses than antibody responses [37]. Therefore,
understanding the mechanism that leads to the loss of
subdominant influenza-specific CD8" T cells may be
crucial in designing a more effective vaccine for influ-
enza and, more generally, for vaccines targeting the ger-
iatric population.

Methods

Donors

All donors were HLA-A2" as typed by monoclonal anti-
body, BB7.2, or a PCR-based kit from (Biosynthesis).
Donors in the control group consisted of both males
and females, between the ages of 21-42, many of whom
had previously received an influenza vaccine (Table 2).
Geriatric donors were a mixed group of males and
females, varied in the timing of their last influenza vac-
cine, and aged 67 and above (Table 3). The donors,



Lee et al. Immunity & Ageing 2011, 8:6
http://www.immunityageing.com/content/8/1/6

control and geriatric, were healthy. The exclusion cri-
teria were patients with cancer, immune disorders, or
on immunosuppressant medication. All donor samples
were obtained from Baltimore, MD, or Cleveland, OH,
USA. Informed consent was obtained from all donors
before enrolling in the study. The Institutional Review
Boards of Johns Hopkins Medical Institutions, Case
Western Reserve University, and the Cleveland VA
approved this investigation.

Peripheral blood mononuclear cells (PBMC)

Blood was obtained using VacutainerCPT or heparin
green top tubes (Becton-Dickinson). PBMC were iso-
lated by Ficoll-Hypaque (Amersham Pharmacia Biotek,
Uppsala, Sweden) density gradient centrifugation. CD8"
T cells were isolated from PBMC using the untouched
human CD8" T cell isolation kit (Miltenyi). Naive cells
were further selected by secondary enrichment with
naive CD8" T cell isolation kit (Miltenyi).

Cell lines

TAP (transporter associated with antigen processing)-
deficient 174CEM.T2 (T2) cells were maintained in M’
medium (RPMI 1640 medium (Gibco, Invitrogen Cor-
poration), non-essential amino acids (Sigma-Aldrich),
sodium pyruvate (Gibco, Invitrogen Corporation), vita-
min solution (Gibco), 2-mercaptoethanol (Gibco), 10
uM ciprofloxacin (Serologicals Proteins Inc)) supple-
mented with 10% fetal calf serum (Atlanta Biologicals).

Peptides

All peptides Mlsg.gs: GILGFVFTL, PBlyjz.421:
NMLSTVLGV, PAj;5.533: SLENFRAYV, NAj3; 230:
CVNGSCFTV, PAss5:: FMYSDFHFI, NA;5 g4
SLCPIRGWAI and NS1;35 13: IMDKNIILKA were
synthesized by GenScript (Table 1). Purity of all pep-
tides (> 95%) was confirmed by mass-spectral analysis
and high-pressure liquid chromatography.

ELISpot assay

PVDF membrane-bottomed plates (Millipore) were
coated with anti-IFNg antibody (EBiosciences). T2 cells
were pulsed with 10 ug/mL peptide in serum-free M’
media overnight at 37°C. CD8" T cells were isolated
from PBMCs as described above. CD8" T cells and
washed target cells were plated at a 1:1 ratio. Negative
control wells contained unpulsed T2 cells with effector
cells. The plates were incubated at 37°C for 16-20 hrs.
The plates were washed with ELISpot wash buffer (PBS,
0.1% Tween-20) (Gibco, Sigma-Aldrich) and incubated
first with secondary anti-IFNg mAb and then with avi-
din-HRP (EBiosciences) according to manufacturer’s
protocol. Plates were developed using AEC peroxidase
substrate (Sigma-Aldrich). Colored spot-forming cells
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(SFC) were counted using an automated ELISpot reader
(Immunospot, CellularTechnology). Each donor’s pep-
tide-pulsed stimulated wells were compared to their
own unstimulated control well.

Generation of artificial antigen presenting cells

A2-Ig based aAPC was prepared according to the pre-
viously described method [23]. A2-Ig molecules were
loaded with 30 pg/ml of a single peptide (GenScript) in
1 ml PBS containing 5 x 107 beads and rotated over-
night at 4°C. aAPC beads were stored in peptide solu-
tion at 4°C, with only a single peptide being loaded onto
individual A2-Ig aAPC per vial. aAPCs were pulsed with
the following peptides: M1sg 65 (M15g.63-aAPC), NAy3z;.
239, PA25.233, PBla13 421, NA75 84, PAge 54, and NS1po3.

132

Expansion of primary human CD8" T cells

CD8" T cells (10°/plate) were co-cultured at a 1:1 ratio
with peptide-loaded aAPC in a 96-well round-bottom
plate (BD Falcon) with 165 ul/well M" medium, supple-
mented with 5% autologous plasma or 5% Human AB
serum (HyClone) and 6% T-cell growth factor (TCGF)
at 37°C in a 5% CO, incubator. TCGF was prepared as
previously described [38]. The culture media was replen-
ished once a week on day 4. On day 7 CD8" T cells
were harvested, counted and re-plated at a 1:1 ratio of
CD8" T cells to fresh peptide-loaded aAPC. This was
repeated weekly for up to 5 weeks. For the immunodo-
minant M1sg ¢ generated CD8" T cells, cells were pla-
ted at a 1:1 ratio with only M1sg.¢3-aAPC. For the
subdominant epitopes, CD8" T cells were cultured at a
1:1 ratio of CD8" T cells to aAPC where the aAPC con-
sisted of a pool of aAPC. Pool 1 consisted of NA3; 530~
aAPC, PAyys5.933-aAPC, and PBlyi3.42,-aAPC. Pool 2
consisted of NA;5.g4-aAPC, PA 44 54-aAPC, and NS1,3.
132-aAPC (Table 1). All aAPC were peptide loaded indi-
vidually and then pooled when added to the plates with
the CD8" T cells.

Multimer staining and flow cytometric analysis

The antigen specificity was tested by staining with
monoclonal antibody (clone UCHT-4, Sigma-Aldrich)
and HLA-A2 tetramer PE loaded with either Mart-1
peptide (Mart-1 tetramer) for noncognate control,
Mlsg.¢6 peptide (Mlsg.g¢ tetramer) (Beckman Coulter
Inc., San Diego, CA), or A2-Ig dimer loaded with
PB1413.421 peptide (PBlyjz 421 dimer), PAj;s 933 pep-
tide, NA231-239, PA4g 52, NA75.84, or NS1155135. The
noncognate dimer control was unloaded A2-Ig dimer.
All A2-Ig dimer was prepared in our laboratory [39].
Samples were collected using a FACS Calibur flow cyt-
ometer with CELLquest software and were analyzed
using FCS Express software.
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Intracellular cytokine staining and CD107a assay

aAPC (10°/well) generated CD8" T cells were placed
in a single well of a 96-well flat-bottom plates (BD
Falcon) at a 1:1 ratio with peptide pulsed or unpulsed
T2 cells. Prior to stimulation, 10 pL anti-human
CD107a PE-Cy5 (BD Pharmingen, San Diego, CA)
were added to each well. After 1 hour of incubation
GolgiStop (BD Pharmigen) was added to each well.
Cells were incubated for up to 10 hours, then har-
vested, stained for with anti-CD8 APC (BD Pharmi-
gen), fixed and permeabilized with CytoPerm/CytoFix
(BD Pharmigen), and stained for cytokines with anti-
IFNg FITC (BD Pharmigen) according to the manu-
facturer’s protocol.

Statistical Analysis

A paired T test was used to determine statistical signifi-
cance in ELISpots. Pairwise analysis was performed when
comparing the total number of subdominant responses
per donor between control and geriatric donors using the
Mann-Whitney test. Fisher’s exact test was used to ana-
lyze the relationship between control and geriatric
donors and their subdominant response. Statistical analy-
sis was performed using a graphing and data analysis pro-
gram (GraphPad Prism 5.01 for Windows, GraphPad
Software, San Diego California USA, http://www.graph-
pad.com). Significance was defined as p < 0.05.
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