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Abstract

Background: The memory response to LCMV in mice persists for months to years with only a small decrease in the
number of epitope specific CD8 T cells. This long persistence is associated with resistance to lethal LCMV disease. In
contrast to studies focused on the number and surface phenotype of the memory cells, relatively little attention has
been paid to the diversity of TCR usage in these cells. CD8" T cell responses with only a few clones of identical
specificity are believed to be relatively ineffective, presumably due to the relative ease of virus escape. Thus, a

broad polyclonal response is associated with an effective anti-viral CD8" T cell response.

Results: In this paper we show that the primary CD8" T cell response to the LCMV gp33-41 epitope is extremely
diverse. Over time while the response remains robust in terms of the number of gp33-tetramer™ T cells, the
diversity of the response becomes less so. Strikingly, by 26 months after infection the response is dominated by a
small number TCRB sequences. In addition, it is of note the gp33 specific CD8" T cells sorted by high and low
tetramer binding populations 15 and 22 months after infection. High and low tetramer binding cells had equivalent
diversity and were dominated by a small number of clones regardless of the time tested. A similar restricted
distribution was seen in NP396 specific CD8" T cells 26 months after infection. The identical TCRVB sequences were
found in both the tetramer™ and tetramer'® binding populations. Finally, we saw no evidence of public clones in
the gp33-specific response. No CDR3 sequences were found in more than one mouse.

Conclusions: These data show that following LCMV infection the CD8" gp33-specific CD8 T cell response becomes
highly restricted with enormous narrowing of the diversity. This narrowing of the repertoire could contribute to the
progressively ineffective immune response seen in aging.

Keywords: CD8 T cell, T cell repertoire, T cell receptor, Aging

Background

The cell mediated immune response is critical in the
clearance of many viral infections. Lymphocytic chorio-
meningitis virus (LCMYV) is one the most widely studied
acute viral diseases in experimental animals [1,2]. For
LCMYV clearance there are critical roles for both CD4"
and CD8" T cells, but it is clear that CD8" memory cells
are vitally important for the resistance to secondary
challenge [3,4]. In LCMV infections there are three dis-
tinct phases of the CD8 T cell responses: priming, ex-
pansion and contraction [4]. Following virus clearance,
antigen specific CD8" T cells persist as memory cells for
many months- essentially the lifetime of the mouse [5]
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and the persistence of T cells may or may not depend of
signaling through TCR depending on the specificity of
the T cell [6]. Intensive work has shown that the number
of antigen specific CD8" T cells in mice declined only
slowly over time. In mice the half life for tetramer”™ CD8"
T cells in the spleen was nearly 2 years [7]. This long life-
span has been seen in many virus specific T cell popula-
tions in both mouse and man [8-10].

In contrast, the body of work enumerating the number
of LCMV specific CD8 T cells, the T cell receptor diver-
sity of those cells has been investigated only sporadically.
Lin and Welsh examined the total TRVB13-3 (IMGT
nomenclature is used throughout, older nomenclature is
translated to IMGT) repertoire by spectrotyping [11].
They concluded that the repertoire changed little after
virus clearance, although superinfection with an unre-
lated virus did change the LCMV specific repertoire
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significantly [12]. Similarly, Blattman et al. found little
change between the primary and secondary responses in
terms of TCR repertoire, but their characterization was
also limited to spectratyping [13]. Others have found a
similar large diversity of LCMV specific clones following
tetramer sorting after acute LCMYV infection [14].

In aging, humans and mice often display an accumula-
tion of a single T cell clone that might occupy as much as
30% of the total CD8" T cells [15-18]. This is known as T
cell clonal expansion (TCE). T cell expansions have a
memory phenotype and are widely believed to arise from
existing memory cells. These TCE are apparently inher-
ently unstable and have a variable phenotype [19-23].
While there has been significant interest in these cells and
their function, there has been relatively little work per-
formed to link the TCE to virus specific T cells.

Relatively little work exists concerning the overall
TCRp diversity of the virus specific responses measured
directly ex vivo. Much of the data involves the use of ei-
ther T cell cloning or spectratyping to evaluate the over-
all repertoire. In the case of spectrotyping, these results
can both under and over-estimate the diversity. T cell
cloning is plagued by strong selection for cells able to
grow in vitro. Much of the literature on TCE suggests
that these cells grow poorly in vitro and so would be
under counted in experiments that require growing T
cells.

In this study we have examined the repertoires of CD8
T cells specific for the LCMV epitope gp33 immediately
following infection and more than two years later, The
epitope specific T cells slowly declined in numbers as
expected. The initial response was highly diverse with an
essentially a flat distribution and no clone representing
more than 3% of the total epitope specific CD8" T cells.
While the fraction of epitope specific cells was nearly
constant, the diversity was dramatically restricted with
age. When the mice were tested at 15 months following
infection we found that the diversity had decreased with
17% of the gp33" response represented by a single Vp;
by 26 months 100% of the gp33-specific TCRP
sequences were a single TCRp clone in one of the mice.
Only 13 unique sequences were found in the other
26 month old mouse. This strongly supports the idea
that clonal expansions do not arise from a distinct
lineage, but from the regular memory pool as has been
previously proposed [16,24].

Results

We report a total 1143 V[ sequences from individual
CD8" T cells isolated from five mice at varying times be-
fore and after LCMV infection. We evaluated a single
mouse at 23 days, 15 and 22 months after infection.
Two mice were tested 26 months after infection. We
recovered 375 unique TCRp sequences specific for gp33
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specific CD8" T cells. We have deposited all sequences in
GenBank (Accession numbers JX277204 — JX277543) and
summarized the results in Additional file 1: Table S1.

VB Usage

We report here 55 randomly sequenced TCRf sequences.
In addition we have sequenced 120,000 TCR V{ from
unselected B6 splenic T cells (Buntzman, Krovi and Frelin-
ger, unpublished). These sequences have a similar distri-
bution of VB usage consistent with previous work by
others (reviewed in [25]). The VP usage in the 55 single
cells is reported here and is shown in Figure 1. When we
sequenced TCRp from gp33 sorted CD8" T cells 23 days
following infection with LCMV, we found 132 different
sequences (Additional file 1: Table S1). Eight per cent
were TRV[P13-3 (Figure 1). However we also found 10%
TRVP12-2 and nearly equivalent numbers of TRVp3,
TRVB12-1 TRVP16 and TRVP30. We compared the pat-
tern of VP usage between the naive and 23 day post infec-
tion V gene usage and found a significant correlation
(p <.003) demonstrating that the initial gp33 specific rep-
ertoire is large and representative of the overall diversity.

Entropy Decline
Entropy has been used by ecologists to describe the
combined species richness (the number of species
present) and the distribution of species present (the
percentages of the total individuals of each species)
[26,27]. This number is analogous to chemical en-
tropy as it measure the total disorder in a system.
Thus a population with more species has a higher en-
tropy, as does one with a flatter distribution of the
number of individuals of each species. We have
chosen to use the Shannon entropy as the index of
diversity that accounts for both the number and dis-
tribution of species as previously described by our
group (41). The entropy is calculated from the se-
quence data- that is the number and distribution of
V] and CDR3. When we compared the entropy be-
tween the day 23 and naive T cells, both had similar,
large entropy (6.4 compared to 6.5) (Figure 2), con-
sistent with high species richness and the lack of
dominant clones. Based on the spectratyping analysis
of B6 mice we had expected the number of T cell re-
ceptor CDR3 to be relatively restricted [13]. Instead
we found TRVP13 genes were used as predicted al-
though they represented only a small fraction (8%) of
the gp33 response. This indicates that spectratyping
can significantly underestimate the diversity of the T
cell receptors used. We emphasize that these se-
quences came from tetramer sorted single cells.

We sequenced TCR from gp33" T cells from the
spleens of mice 15 months after infection. By this time,
the response had significantly fewer unique TCRp
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Figure 1 Pinwheel depiction of the TCRVB usage of gp33-tetramer* cells following infection with LCMV. Naive represents the
unimmunized repertoire. Each pinwheel represents the distribution of TCRV[ from tetramer sorted cells from a single mouse. Two mice were
tested at 26 months, designated #1 and #2. The number of cells sequenced in each pinwheel is: naive, 55; 23 Days, 136; 15 months, 705;

22 months, 187; months 26 mouse 1, 60; 26 months mouse 2, 64. The entire CDR3 sequences have been deposited in Genbank, Accession

numbers: [Genbank:JX277204 — JX277543].

represented (Figure 1), We found only 141 different
clones among the 705 TCR sequenced. Further, there
was a narrowing of the VP usage, with TRV[16 present
in the highest frequency (18.7% followed by TRVp4,
17.4%; TRVB1, 10.5%; TRVP12, 9.6% and TRVP13-3,
12.7%). Together, these make up 67% of the sequences
recovered. At 15 months post infection the entropy had
decreased from 6.5 to 3.8, a large decrease in diversity
(Figure 2). There was no significant correlation of TRV
usage with the 23 day post infection repertoire, consist-
ent with the narrowing of the responsive repertoire as

measured by the large decrease in entropy. There was
also no significant correlation with the naive repertoire
VP usage.

We performed an identical experiment sorting gp33" T
cells at 22 months post infection. Here we recovered
187 VP sequences. In this mouse 75% of the VP sequences
were TRVP13-3, with 8% TRVB29. Of the 142 TRV[B13-3
sequences recovered, there were only two unique sequences
represented. This was a marked change from the 15 month
sample. As would be expected from the clonal dominance,
the entropy had further decreased to 1.8. There was a
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Figure 2 Shannon Entropy of the TCRVp usage of gp33 tetramer” CD8 T cells over time following infection with LCMV. Shannon
entropy was calculated for each distribution using the pooled data from tetramer high and low cells at 15 and 22 months. The entropy was
calculated separately for the 26 month mice and averaged.
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significant correlation with the VP usage with the 15 month
sample as judged by Pearson's correlation (p <.001).

In the sample from two mice 26 months after infec-
tion, the VB usage had decreased even further. One of
the mice used only a single VB and CDR3. The other
mouse used only 6 VP with TRVB29, TRVB13-3 and
TRVP16 making up the majority of the cells (Figure 1).
Using only the data from the more diverse mouse, the
entropy had decreased still further (Figure 2).

We performed an identical analysis on Jp usage
(Figure 3). Using the same approaches we found the
same results- Jp usage decreased as a function of time
after infection and the same conclusion is reached-
there is a sequential enrichment of a relatively small
number of clones.

VB JB pair usage narrows over time
Using the specific combination of Vf JB pairs, Figure 4
shows the striking narrowing of the repertoire. We show
the pinwheel of the initial VB Jp pairs after initial infec-
tion, but by 15 months the pattern had strikingly simpli-
fied. At 26 months post infection just four VB Jp
combinations represented 82% of the clones, TRVB2-/Jf3
2-1, 25%; TRVB29/JB 2-5, 22%; TRVP13-3/Jp 1-1, 20%
and TRVB16/]p 2-5 15%. In a second 26 month post in-
fection mouse 100% of the gp33-specific T cells were
TRVP13-3/]p 2-7. Thus, the dominance of the TRVB13-
3 T cells varies from mouse to mouse, but the narrowing
of the repertoire did not.

Strikingly, no TCR CDR3 were shared among any of
the these mice. Here we found no evidence of public
phenotypes in the gp33-specific D" restricted response.
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Slow decline in gp33 specific T cells

The number of gp33" CD8" T cells decreased slowly
over time as has been previously reported [28]. However,
the decrease was relatively small in our experiment; de-
creasing from 3% of CD8" (measured in a separate ex-
periment) to approximately 1.7% over the two year
period of observation (Figure 5). Thus there is a two fold
decrease over this time period. The loss of heterogeneity
cannot be accounted for simply by the selective loss of
gp33* CD8" T cells since the frequency of gp33™ T cells
remains high. This is similar to the frequency of loss of
virus specific T cells previously reported [5,7-10].

VB sequences are shared in high and low tetramer
binding CD8" T cells
We sorted gp33" T cells from the 15 month post infec-
tion spleens into high and low tetramer binding popula-
tions. We compared the TCRp sequences from ng’c’»hi
tetramer binders with the gp33'° binders. The amount of
tetramer bound is often used to estimate the affinity of
the TCR in cells, with higher binding thought to repre-
sent high affinity T cells. When we analyzed those popu-
lations separately we found a very similar distribution of
VP usage as well as a number of identical sequences in
both the 15 month tetramer™ and tetramer'® samples
(Figure 6). Twenty-nine VB sequences were shared be-
tween the two populations. Since each sequence is
derived from a single cell, the duplication of sequences
cannot be attributed to sequencing artifacts. Indeed, one
sequence appears 42 and 75 times in the high and low
binding populations respectively.

We performed a similar experiment with a 22 month
post infection mouse. We sorted gp33™ CD8" T cells
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Figure 3 Pinwheel depiction of the TCR JB usage of gp33-tetramer™ cells following infection with LCMV. Naive represents the
unimmunized repertoire. The distributions are derived from the same sequences described in Figure 1.
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Figure 4 Pinwheel depiction of the VBJB pairs used in gp33-tetramer™ cells following infection with LCMV. Naive represents the
unimmunized repertoire. The distributions are derived from the same sequences described in Figure 1. The legend is not shown because it is
impossible to display all 284 VJ combinations.

into high and low binding populations and found that

there was little difference between the high and low

tetramer binding cells. Both were dominated by the

same TRVB13-3 sequence and both used JB 1-1 with one N
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and low populations respectively (Figure 6). When we
examined the Jp usage in tetramer™ and tetramer'® bind-
ing cells we found the same result (Figure 7) with there
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Figure 6 Pinwheel depiction of the TCRVB usage of gp33-

Figure 5 Stability of the fraction of gp33 tetramer™ T cells over tetramer" cells and gp33-tetramer'”® 15 and 22 months

time following LCMV infection. Here we show the fraction of CD8* following infection with LCMV. Cells were sorted into D°-gp33
cells that were stained with the LCMV-DP-gp33 tetramer at each time. tetramer high binding and low binding populations. Single cells
Data shown is from the primary sort files, except for the 23 days sames were sequenced and each pinwheel describes the distribution of
which comes from a separate experiment and is an average of 3 mice. TCRVB expression. 15 month tetramer™ binding is represented by
Pearson correlation coefficient shows no significant correlation with 471 cells, and tetramer'® by 234 cells; 22 month tetramer™ by 76 and

time. tet’® by 111 cells.
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Figure 7 Pinwheel depiction of the TCR JB usage of gp33-
tetramer™ cells and gp33-tetramer'® 15 and 22 months
following infection with LCMV. The distributions are derived from
the same sequences described in Figure 4.
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being no significant difference in Jp usage in tetramer™

and tetramer' cells. While it is possible that the shared
sequences express different Vo chains it seems unlikely
that all of the differences in tetramer binding would be
due to differences in affinity mediated by Va.

NP396 specific CD8"* T cells also have a restricted
repertoire in old mice

To determine if this phenomenon was limited to gp33
specific T cells we sequenced NP396 specific T CD8" T
cells at 26 months in the same mice that were donors
for the gp33-specific T cells. Figure 8 shows the usage of
TRV, Jp and VB/ JP pairs in these mice. As we saw with
the gp33 specific T cells, the NP396 specific T cells also
had a restricted repertoire compared to the naive cells
(Figure 1 compared to Figure 8). These NP396 tetramer”
T cells represented 2.5% and 0.6% of the CD8" T cells
from 2 mice, so their frequency was similar to that of
the gp33 specific T cells. The calculated entropies of 3.4
and 2.5, is very similar to those found in the gp33 tetra-
mer" CD8" T cells. Thus, although we do not have data
from earlier time points for the NP396 specific T cells,
in old mice the memory repertoire was similarly
contracted to the gp33 specific repertoire.

Together these data require that some TCRp increase
at the expense of the other LCMYV specific T cells recog-
nizing the same epitope. This is not a simple survival ad-
vantage, but must include a proliferative advantage
because the loss of the other clonotypes is not sufficient
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Figure 8 Pinwheel depiction of TCR usage of NP396 specific
CD8" T cells sorted from 26 month post LCMV infection mice.
The NP396 cells are sorted from the same mice in the previous
experiments. Mouse 1 is represented by 27 sequences and mouse 2

by 66 sequences.

to account for the increase in the dominant clones. The
data presented here not speak to any mechanism for the
decreased variability, but could result from fortuitous ex-
pression higher expression of receptors for IL-5 or IL-15
that are completely unrelated to the T cell receptor. Fur-
ther, although TRVP13-3 was always an important com-
ponent of the response, its dominance varied from 100%
down to 20%.

Discussion

As mammals age, they become increasingly unable to
mount de novo immune responses [21,29,30]. Surpris-
ingly, even pre-existing immune responses may also be
impaired [31]. There are three broad, nonexclusive
explanations for this. First, antigen specific cells might
be absent; second, the antigen specific clones might be
present, but unable to respond, and finally, the specifi-
city of the clones might be off target as in the case of
dengue fever [32]. The data we and others have found in
old mice suggests that at least a substantial frequency of
CD8" memory T cells are present that are able to bind
MHC/peptide complexes in the form of tetramers [29].
Therefore it seems unlikely that the first explanation is
correct. However, the fact that many of the clones ex-
press a common TCRp chain hints that the clones might
have a restricted specificity, rather than being anergized.
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The initial response to gp33 is very diverse. As a re-
sult, the VP usage is significantly correlated with the
naive repertoire. The correlation of the LCVM specific
repertoire with the naive repertoire is not surprising
considering its high entropy. VB usage in the 15 month
repertoire is not significantly correlated with the naive
repertoire, although there is a significant correlation
with the day 23 sequences. This is consistent with the
continuous narrowing of the response, where each new
repertoire measurement would be a subset of the previ-
ous one but with most of the clones disappearing over
time. The observed restriction was most pronounced in
the 26 month post infection samples where in one
mouse we observed 4 dominant V[ sequences, and in
another we saw a single VP sequence. To establish this
definitively, sequential sequence analysis of the reper-
toire within a single mouse would need to be followed
over time.

We also analyzed the VP JB pairs. This analysis is sub-
stantially less robust due to the large number of pairs
(284) of VP JBp combinations. In this analysis we found
no clear pattern as we did in the VP usage and showed
no significant correlations by Pearson's test.

There are many reports concerning TCE in both mice
and humans [15-20,22,23,33,34]. There is no clear con-
sensus concerning the genesis of TCE except the expan-
sions are not malignant cells and are not associated with
any obvious pathology. Substantial speculation exists as
to the source of the expanded T cells. The data we
present here is completely consistent with TCE being
derived from the normal T memory pool. In the two old
mice we examined, it is possible that both would be
detected as TCE, although the expansion in mouse 1
might be below the level of detection. For mouse 2 the
frequency of gp33-specific T cells was still over 3% and
there was essentially only a single gp33 clonotype
detected. Even in bulk sequencing of TCRp from this
mouse an expanded clonotype of this size would be eas-
ily detected as an expansion of the TRVP13-1 family.
We speculate that TCE are the result of a predictable
narrowing of the repertoire of a highly immunogenic
challenge to the immune system.

It is tempting to speculate about the biological impact
of such a narrow gp33 response. We know that infection
of a monoclonal gp33 P14 mouse with high titer virus
stock results in the selection of escape mutants [35,36].
We might predict that a similar event would happen if
these mice were rechallanged with LCMV. However,
other anti-LCMV [37] specific T cells are present. Mem-
ory responses to NP396 are well documented following
LCMV infection. We observed a high frequency of
NP396 specific cells even after 26 months. Thus in vivo,
while there might be escape mutants favored for a spe-
cific epitope for effective virus persistence, the virus
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would need to nearly simultaneously mutate multiple
epitopes at once, which seems unlikely.

The mechanism by which such expansion of CD8 T
cells would arise is not clear. Many have speculated that
high avidity clones are selected for following virus infec-
tions [38,39]. This seems logical based on the well docu-
mented affinity maturation of antibody responses [40].
Using cell sorting, we were able to address this notion.
When cells were sorted based on tetramer binding into
high and low tetramer binding cells we could compare
the complexity of the repertoire VB usage in the high
and low tetramer binding population. These populations
were highly correlated in both the 15 and 22 month
samples, suggesting that the tetramer binding does not
effectively discriminate these two populations. This is in
accordance with our published work that shows the
tetramer binding of the identical TCR is dependent on
the level of CD8 expression [41].

While we have collected much less data on the re-
sponse of these same mice to the NP396 epitope, we
find 20 unique sequences among 93 cells sequenced with
a calculated entropy of 2.58 that is only slightly more
complex than the entropy calculated for the pooled gp33
mice (1.86) but enormously less for the total repertoire
in a naive mouse (6.3). Thus it seems likely that a similar
contraction of the epitope specific repertoire occurs in
both the gp33 and NP396 populations.

We are not the first to study the LCMYV specific T cell
repertoire. Lin and Welsh examined the long and short
term memory response of mice to LCMV by limited se-
quencing and spectratyping focusing on Vp13-3 [11].
There they found a relatively stable pattern in the mem-
ory pool as long as 7 months following infection. When
we examined the entropy of mice as young as 15 months
post infection we saw a significant decrease in the en-
tropy. It is possible the Welsh's group did not detect the
contraction by 7 months due to focusing on TRVp13-3.
Alternatively, it might be that the the repertoire is stable
for seven months and only begins to contract after that
time. Our data do not allow us to rule out that possibil-
ity that the decline in repertoire complexity is not linear.
This same group saw a profound narrowing of the
LCMV repertoire as a result of infection with another
virus [42]. While we cannot completely exclude the pos-
sibility that our mice became infected with a second
virus, we find this extremely unlikely as our mice were
housed in pathogen-free conditions prior to and follow-
ing LCMYV infection.

Conclusions

Our work demonstrates that the diversity of a memory
T cell receptor repertoire can progressively decrease over
time in the absence of persistent antigenic stimulation.
This may result from a survival "program" of particular
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clonotypes determined by TCR sequence at the time of
the initial immune response and clonal expansion, or
may represent stochastic success of expanded clonotypes
independent of their TCR.

Materials and Methods

Mice

C57Bl/6 ] (B6) mice were purchased from Jackson labs
and housed in an AALAC accredited, SPF facility at
UNC. Previously infected mice were maintained under
BSL2 conditions, All procedures were approved by the
UNC IACUC.

LCMV Infection

Mice were infected by intraperitoneal injection of 10*
pfc of Armstrong 3 LCMV at 6 weeks of age. A single
cohort of 5 mice was injected and followed over time.
Mice were sacrificed and their LCMV specific repertoire
was analyzed as below.

Purification of LCMV specific CD8" memory cells

Spleen cells were prepared from mice 23 days, 15, 22 and
26 months after infection. Tetramers were assembled
from D protein produced in E. coli and stored as inclu-
sion bodies before refolding. Proteins were refolded
in vitro with either gp33 (KAVYNFATM) or NP 396
(FQPQNGQF) peptide. Purified monomers biotinylated
in vitro with BirA and were purified by size exclusion
chromatography and assembled with PE labeled ultra-
Avidin (deglycosylated avidin). LCMV gp-33 or NP-396
specific CD8" T cells were purified by flow cytometry
using D°-gp33 or NP specific tetramers as previously
described [43]. Lymphocytes were stained with anti CD8,
tetramer, anti CD19 and anti CD4. CD8" tetramer® CD19,
CD4- cells were sorted using a MoFlo XDP cell sorter at
the UNC flow cytometry faculty. Cells were sorted at one
cell per well into 96 well plates.

TCR sequencing and analysis

Cells were sorted at one cell per well into 96 well plates
directly into trizol. 4pL of an osmotic lysis buffer (2pL
PBS, 2uL nuclease-free water with 10 mM DTT and 10U
RNAselN). Plates were immediately flash-frozen on dry
ice and stored at -80°C until rt/pcr amplification.
Sequences were determined following RT/PCR using a
degenerate primer set that amplifies all TCRpP chains
and cycling conditions as previously reported in Vincent
et al. [41]). TCR were amplified and sequenced as previ-
ously described [41].

Statistical analysis

Statistical analysis was carried out using SOFA version
1.1.4 (Paton-Simpson & Associates Ltd, Auckland, New
Zealand). P values for Pearson's correlations were
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corrected for multiple comparison using Bonferroni
correction. Shannon Entropy was calculated using soft-
ware developed and supplied by T. Kepler (Boston
University) as we previously described [44].

Nomenclature
We have consistently used the current IMGT nomencla-
ture in this manuscript [45].

Additional file

[Additional file 1: Table 1. Summary of Sequence Data. ]
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