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Early dysregulation of the memory CD8+ T cell
repertoire leads to compromised immune
responses to secondary viral infection in the aged
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Abstract

Background: Virus-specific memory CD8+ T cells persist long after infection is resolved and are important for
mediating recall responses to secondary infection. Although the number of memory T cells remains relatively
constant over time, little is known about the overall stability of the memory T cell pool, particularly with respect to
T cell clonal diversity. In this study we developed a novel assay to measure the composition of the memory T cell
pool in large cohorts of mice over time following respiratory virus infection.

Results: We find that the clonal composition of the virus-specific memory CD8+ T cell pool begins to change
within months of the initial infection. These early clonal perturbations eventually result in large clonal expansions
that have been associated with ageing.

Conclusions: Maintenance of clonal diversity is important for effective long-term memory responses and
dysregulation of the memory response begins early after infection.

Keywords: T cell receptor repertoire, Acute respiratory virus infection, CD8+ T cell memory maintenance, T cell
clonal expansion
Background
Acute respiratory viral infection results in the generation
of memory CD8+ T cells that persist in high frequencies
for years after antigen clearance [1-3]. These memory
CD8+ T cells mediate accelerated viral clearance follo-
wing secondary infection and can result in protection
from death under certain circumstances [4-6]. Given the
importance of memory CD8+ T cells in protective im-
munity, understanding the maintenance of this popula-
tion is important for vaccine development.
Memory T cell numbers remain relatively constant for

many years post-infection. This is largely a consequence
of homeostatic turnover driven by the cytokines IL-15
and IL-7 [7-9], without requiring the presence of antigen
or MHC molecules [10,11]. However, it is unclear whether
homeostatic proliferation is sufficient to maintain the
clonal diversity of the memory T cell pool. Previous
studies have shown that CD8+ memory T cell pools can
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become dysregulated over time, culminating in the
appearance of large monoclonal expansions of T cells
(TCE) in aged humans and mice [12-17]. Adoptive trans-
fer experiments and BrdU incorporation demonstrate
that large TCE exhibit higher rates of homeostatic prolif-
eration, which is likely to contribute to the development
of these expansions. In mouse models of Sendai or influ-
enza virus infection, we recently demonstrated that, in
extreme cases, virus-specific CD8+ memory T cells could
comprise upwards of 90% of the entire CD8+ T cell pool
by 22 months post-infection. These virus-specific T
cell expansions are usually first identified when they
comprise greater than 10% of the entire CD8+ T cell
pool, typically around 15 months post-infection. Inter-
estingly, although clonally expanded memory T cells
are present in elevated numbers and maintain effective
cytokine and cytotoxic activity ex vivo, most of these
expanded clones are significantly impaired in their cap-
acity to mount recall responses to secondary challenge
in vivo [15].
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Current methods to detect clonal expansions are in-
sensitive to small changes in the memory T cell reper-
toire and are only able to identify the extreme examples
of memory T cell dysregulation (when the clonal expan-
sion represents greater than 10% of the CD8+ T cell
population). Based on the insensitivity of the standard
assay, we hypothesized that we may be greatly under-
estimating when the T cell repertoire first begins to
degrade. To address this, we developed a sensitive assay
to measure the composition of the memory T cell pool
following acute respiratory virus infection. Using this
assay, we show that perturbations occur in the me-
mory T cell pool well before the appearance of large
clonal expansions, in a substantial proportion of ani-
mals. In addition, these small perturbations exhibit
similar functional abnormalities that have been ob-
served with large clonal expansions; including impai-
red ability to respond to secondary infection and altered
homeostatic proliferation.

Results and discussion
Small perturbations occur in the virus specific memory
T cell pool and give rise to large TCE
We infected large cohorts of C57BL/6 mice with Sendai
virus and tracked the pool of memory CD8+ T cells spe-
cific for the immunodominant NP324-332/K

b epitope.
Blood samples were taken from mice at various times
post-infection and the frequency of NP324-332/K

b-specific
T cells among total CD8+ T cells was determined. As
reported previously, the frequency of NP324-332/K

b-
specific T cells at one month post infection averaged 2%
with a range of 0.3-6.4% (Figure 1A). Using the one
month time point as the standard, it was apparent that
large clonal expansions (ie greater than 3SD above the
average frequency at one month post-infection) began to
appear in several mice by 15 months and were present in
8.5% of mice by 19 months. In an attempt to detect
smaller perturbations in the NP324-332/K

b-specific T cell
repertoire, we examined TCR Vβ8 usage. Our idea was
that perturbations in the antigen-specific T cell pool
would be detected by a shift in TCR Vβ usage, even in
the absence of a significant increase in the overall fre-
quency of cells. However, as shown in Figure 1B, the
range of Vβ8 usage was very large at one month post in-
fection, making it difficult to identify significant changes
over time.
As an alternative approach to studying repertoire per-

turbations, we took advantage of altered NP324-332/K
b

peptides to subdivide the memory T cell pool. Previous
studies had shown that subsets of T cells specific for the
NP324-332/K

b epitope are able to recognize altered pep-
tides (in which T cell receptor contact residues had been
replaced without affecting MHC binding) bound to Kb

(Figure 2A) [18]. We focused on one peptide that had
an amino acid substitution at position 5 (replacing
Asparagine with Histidine, which we have denoted as
5HNP324-332/K

b). This altered peptide stimulates IFNγ pro-
duction in approximately 25-30% of the total NP324-332/
Kb+ T cell pool elicited by Sendai virus infection
(Figure 2B). Tetramer reagents prepared with the
5HNP324-332 peptide binds to on average 25-30% of the
total NP324-332/K

b-specific T cell memory pool from mice
1 month post-infection. Importantly, the fraction of the
memory T cell pool binding to 5HNP324-332/K

b was rela-
tively conserved in the young memory T cell pool (range
of 2-40%, Figure 1C). To confirm that the altered pep-
tide tetramers would detect perturbations in the repertoire
of NP324-332/K

b-specific memory T cells we stained per-
ipheral blood from mice with large clonal expansions
based on the overall frequency of NP324-332/K

b-specific
T cells (>10% of total CD8+ T cell pool). As shown in
Figure 2C and D, the fraction of NP324-332/K

b-specific
memory T cells that bound the 5HNP324-332/K

b tetramer
was either markedly increased or almost completely
absent, consistent with a reduction in the overall clonality
of the population. Together, these results suggest that
analysis of altered peptides can be used to identify
changes in the diversity of the memory T cell repertoire.
We next used the altered peptide approach to study

changes in the repertoire of the memory T cell pool over
time. Using blood samples from the same cohorts of
Sendai virus infected mice described in Figure 1A, we
determined the fraction of the antigen-specific memory
T cell pool that bound the 5HNP324-332/K

b tetramer. Per-
turbations in the memory T cell pools of individual mice
were defined by altered tetramer binding that was 3SD
above the normal range of young (1 month) memory.
Following this stringent criteria, we detected significant
perturbations in the memory T cell pool in >4% of mice
as early as 8 months post infection (Figure 1C, filled red
circles). Consistent with our hypothesis, many of the
mice exhibiting large repertoire perturbation based on
the altered peptide approach did not exhibit an overall
increase in the frequency of NP324-332/K

b-specific T cells.
To illustrate that altered peptides allow us to detect

changes in the repertoire even when there is no change
in frequency of NP324-332/K

b+ cells we tracked the fre-
quencies of 5HNP324-332/K

b+ and NP324-332/K
b+ cells

from individual mice over time. For example, mouse 139
(blue squares) and 28 (blue triangles) have significant
repertoire perturbations even though they expressed nor-
mal NP324-332/K

b-specific T cell frequencies at 8 months
post infection (Figure 1D), however, the frequency of
NP324-332/K

b-specific cells gradually increased over time
and both animals exhibited expansions in the CD8+ T cell
pool by 15 months post infection (≥ 10% NP324-332/
Kb-specific cells among CD8+ T cells). In both cases,
mice expressed elevated levels of 5HNP324-332/K

b-specific
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Figure 1 Progressive dysregulation of the virus-specific CD8+ T cell repertoire over time. Cohorts of 200 and 100 B6 mice were infected
with Sendai virus and bled at 1 (100 mouse cohort), 8, 12, 15 and 19 (200 mouse cohort) months post infection. A, The frequency of NP324-332K

b+

cells among total CD8+ T cells and B, frequency of Vβ8+ cells among NP324-332K
b+ cells for each individual mouse is graphed over time. C, The

percentage of 5HNP324-332K
b+ cells relative to NP324-332K

b+ cells is shown, filled red circles indicate mice with frequencies greater than 3SDs from
the normal frequency observed at 1 month (horizontal line). D, The frequency of NP324-332K

b+ cells among total CD8+ T cells is shown for mice
with increased 5H and are indicated by red filled circles. In all panels, horizontal line indicates frequency greater than 3SDs from the normal
frequency observed at 1 month. In panels C and D, blue squares and triangles represent mouse 139 and 28 respectively.
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T cells within the memory T cell pool, which could be
detected as early as 8 months post infection (Figure 1C).
It should be noted that this assay underestimates the

clonal dysregulation since the assay only considers on
average 25-30% of the T cell clones in the normal
antigen-specific memory T cell repertoire (note that on
average 70-75% of T cell clones fail to recognize
5HNP324-332/K

b at 1 month-post infection). Therefore,
if we extrapolate these data to include the remaining
70-75% of T cell clones, the frequency of individuals
that exhibit repertoire perturbations is likely to be
3–4 fold greater than what we can observe with the
5HNP324-332/K

b tetramer.
One possible concern with these data is that T cells

specific for 5HNP324-332/K
b might be more unstable than

the general population and preferentially become per-
turbed. Therefore, we examined the frequency of the
antigen-specific T cell pool for a different altered pep-
tide, 8ENP324-332/K

b. This altered peptide had an amino
acid substitution at position 8 (replacing alanine with
glutamic acid), and was recognized by on average 80% of
NP324-332/K

b-specific T cells (Figure 2A). In this case,
perturbations in the antigen-specific T cell pool could be
identified by the loss of 8ENP324-332/K

b tetramer binding.
As shown in Figure 3A, the number of individual mice
exhibiting perturbed 8ENP324-332/K

b frequencies (< 47%
8ENP324-332/K

b-specific T cells relative to total NP324-332/K
b+

cells) was similar to the data obtained using 5HNP324-332/K
b

tetramer. Furthermore, perturbations could be detected as
early as 8 months post infection even though the fre-
quency of total NP324-332/K

b-specific cells in affected mice
was within the normal range (Figure 3B). Of importance,
in most cases, individual mice exhibiting perturbed
8ENP324-332/K

b frequencies were not the same mice with
5HNP324-332/K

b perturbations (Figures 1D and 3B). This
supports our hypothesis that the data obtained using one
altered peptide underestimates the total frequency of mice
that exhibit repertoire perturbations.
Together, the data confirm the findings with the

5HNP324-332/K
b tetramer, that smaller perturbations

within the memory T cell pool appear earlier and occur
in a significantly greater proportion of animals than pre-
viously recognized when measuring total frequency of
NP324-332/K

b-specific T cells among the CD8+ T cell
population.
Small perturbations in the memory T cell pool exhibit
dysfunctional immune responses
We next asked whether small perturbations within the
memory T cell pool resulted in dysfunctional immune
responsiveness. To address this question, we first identi-
fied mice exhibiting a marked increase in the fraction of
memory T cells recognizing 5HNP324-332/K

b (>40% of
memory T cells), consistent with a clonal expansion
within the memory T cell pool. Lymphocytes isolated
from these mice were stained with the WT NP324-332/K

b

tetramer and the 5HNP324-332/K
b tetramer, allowing us

to discriminate between the perturbed memory T cells
(within the 5HNP324-332/K

b positive population) from
the rest of the memory T cell pool (NP324-332/K

b positive;
5HNP324-332/K

b negative). An example is shown in
Figure 4A where a perturbation in the memory T cell
pool was identified based on the elevated frequency of
cells binding to 5HNP324-332/K

b tetramer relative to the
total frequency of the antigen specific pool in the blood.
In contrast, the fraction of the total memory pool binding
to 5HNP324-332/K

b tetramer in an aged matched individ-
ual with a normal T cell repertoire was within the normal
range of young (1 month) memory (Figure 4C) The per-
turbation illustrated in Figure 4A was further highlighted
by examining Vβ8 usage between groups (Figure 4B
and D). In mice with a small 5HNP324-332/K

b per-
turbation, we found that the frequency of Vβ8+ T cells
in 5HNP324-332/K

b-specific population was markedly
decreased (Figure 4B, right plot), further supporting
our claim that cells binding to the 5HNP324-332/K

b

tetramer are significantly less clonally diverse in mice
with 5HNP324-332/K

b perturbations. In contrast, the fre-
quency of Vβ8+ T cells in the NP324-332/K

b-specific
population was similar to an individual with a normal
memory T cell repertoire (Figure 4B, left plot).
We next assessed the ability of perturbed memory

T cell populations to proliferate either homeostatically or
to cognate antigen (Figure 5A). Spleen cells from three
mice (mouse 17, 75 and 10) bearing small perturbations
(>40% 5HNP324-332/K

b among antigen-specific cells)
were enriched for CD8+ T cells and the ratio of perturbed
to normal memory T cells was determined by tetramer
staining (Mouse #75, Figure 5B, left panels). First, cells
were transferred into sublethally irradiated B6 CD45.1
recipients and the rate of homeostatic proliferation of
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Figure 2 Detecting perturbations in the memory T cell pool using an altered peptide approach. NP324-332K

b+ and altered peptide amino
acid sequences are shown in A. Spleen cells from mice infected with Sendai virus 1 month earlier were stimulated with 1μg of either NP324-332K

b

(B, top left) or 5HNP324-332K
b (B, bottom left) peptide in the presence of BFA and IL-2 or were stained with NP324-332K

b+ or 5HNP324-332K
b+

tetramers, CD8 and CD44. Flow cytometric plots show intracellular IFNγ production (B, left) or frequency of tetramer (B, right) in CD8 gated
T cells. C, Peripheral blood from mice with normal (1 month post infection) (left) and TCE (12–24 month post infection, mouse #s 13 and 197)
(middle and right) memory CD8+ T cell pools. Flow cytometric plots show frequency of NP324-332K

b+- (top) and 5HNP324-332K
b+- (bottom) specific

cells among CD8+ T cells. Numbers in the gate indicate frequency of cells among CD8+ T cells, numbers outside the gate represent frequency of
cells relative to frequency of NP324-332K

b+ cells. D, Data show frequency of 5HNP324-332K
b+ relative to NP324-332K

b+ cells from 1 month memory
mice, (symbols indicate individual mice and bar represents mean value) and of 6 individual memory mice 12–24 months post infection exhibiting
TCE (>20% NP324-332K

b+cells). * Represents range % of CD8+ T cells binding to tetramer relative to NP324-332K
b+ based on blood samples taken

from 200 Sendai virus infected mice.
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perturbed memory T cells was determined by comparing
the ratio of normal to perturbed memory T cells prior to
and 30 days after transfer using tetramer staining (Mouse
#75, Figure 5B middle panels, homeostatic proliferation).
The ratio of normal to perturbed memory is shown in
Figure 5C for all three mice (closed bars). It can be seen
that perturbed memory T cells from mouse 17 and 75
had a higher rate of homeostatic proliferation compared
to the rest of the memory T cells (1.5 and 2.3 fold greater
expansion, respectively). In contrast, perturbed memory
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rate of homeostatic proliferation, relative to the rest of
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the ratio at 13 days post infection (Figure 5A, Antigen-
driven proliferation). The tetramer staining is shown in
Figure 5B for mouse #75 (right panels) and the ratio
for all three mice is plotted in Figure 5C (open bars). The
data show that perturbed memory T cells from mouse 17
and 75 proliferated 3.5 and 7 fold less in response to
antigen stimulation than unperturbed memory T cells.
In contrast, antigen-driven proliferation by perturbed
memory T cells isolated from mouse 10 was comparable
to unperturbed memory (Figure 5C). As this population
of memory T cells also exhibited a normal rate of cell
division under lymphopenic conditions, the data show
that, in some cases, perturbed memory T cells can
retain immune responsiveness.
Large TCE are more frequently detected as individuals

age, leading to the hypothesis that these expansions
are triggered by changes in the aged environment.
However, here we have used a sensitive assay to show
that the composition of the memory T cell pool
undergoes significant alterations as early as 8 months
post infection and occurs in a significant proportion
of animals.
The extent to which perturbations in the memory
T cell pool becomes detrimental for host immunity to
secondary infection is not clear. Previous studies using
TCE of unknown specificity show that their presence
within the CD8+ T cell pool significantly limits the avail-
ability of T cells capable of responding to new infections,
resulting in increased susceptibility to infection [19,20].
In this study we demonstrate that the majority of per-
turbed T cells are unable to participate in recall responses.
By contrast, the residual ‘normal’ memory T cells mounted
robust response to antigen. Together these data suggest
that perturbations in the memory T cell pool have a
negative impact on the total memory T cell pool progres-
sively limiting the number of memory T cells that are
capable of responding to a secondary infection as they in-
crease in size. Of note, not all perturbed memory T cells
have impaired recall responses. In some cases, perturbed
immunity mounted equivalent responses to normal
memory T cells. This suggests the degradation of the
memory pool is highly stochastic, and although in most
cases perturbed responses are detrimental to host immun-
ity, sometimes they can participate in the recall response.
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Figure 5 Small perturbations in the memory T cell pool exhibit dysfunctional immune responses. A, CD8+ T cells isolated from mice with
5HNP324-332K

b+ perturbations (%5HNP324-332K
b+ relative to NP324-332K

b+: mouse 17, 60%; mouse 75, 59%; mouse 10, 45%) were isolated and used
in adoptive transfer experiments depicted by the diagram to measure homeostatic proliferation (top) and antigen-driven proliferation (bottom).
A detailed description of the protocol can be found in the methods section. B, Representative staining of NP324-332K

b+ and 5HNP324-332K
b+

populations from spleen of mouse 75 is shown gated on CD45.2+ CD8+ cells; numbers inside the gate indicate frequency of tetramer positive
cells among CD8+ T cells, numbers at upper left corner of plots represent frequency of cells relative to frequency of NP324-332K

b+ cells (% tetramer
frequency ÷ % NP324-332K

b+) x100). C, Data from adoptive transfer experiments from three different donors (mouse 17, 75 and 10) is graphed as
the ratio of perturbed (%5HNP324-332K

b+) to the rest of the memory T cells (%NP324-332K
b+ − %5HNP324-332K

b+) from the spleen. Ratios for each
population were normalized to the Ratio prior to transfer. Number of recipients ranged from 1 to 2 for each donor mouse.
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In summary, the presence of a TCE can significantly limit
the availability of T cells capable of responding to patho-
gens they are specific for and unrelated pathogens [19,20].
Therefore, TCE have a negative impact on immune
responses to new and previously encountered pathogens,
resulting in an increase in susceptibility to infection.
The long-term maintenance of memory T cells relies

on continuous homeostatic proliferation. The data from
this study suggest that renewal of memory CD8+ T cells
by homeostatic proliferation maintains T cell numbers
but may not be adequate for maintaining repertoire
diversity or function of memory CD8+ T cells over time.
One possible explanation is that perturbations arise
as a result of stochastic, asynchronous cell division. In
this case, one T cell clone maintains a slightly higher
division rate than another clone, resulting in the gradual
expansion of dominant T cell clones in the CD8+ T cell
pool. In support of this hypothesis, we showed that per-
turbed memory T cells isolated from two of three mice
expressing perturbations in the virus-specific memory T
cell pool proliferate more than normal memory when
transferred into lymphopenic hosts. In addition, studies
using adoptive transfer approaches or BrdU incorpor-
ation have shown that clonally expanded memory CD8+

T cells from aged mice undergo more cell division com-
pared to normal memory populations [12,15,21]. Thus,
the increased rate of homeostatic turnover by individual
CD8+ T cell clones can contribute to the development of
memory T cell perturbations.
The fact that perturbed memory T cells frequently

failed to respond to secondary antigen challenge is likely
to have a negative impact on the efficacy of the recall
response. However, it should be noted that secondary
challenge skewed the response in favor of normal
memory T cells by purging perturbed memory CD8+ T
cells from the population. Thus, enriching for respon-
sive T cells may restore the memory T cell pool efficacy.
With this in mind, it may be important to readdress
whether cognate antigen is important for maintaining
long-term memory CD8+ T cells. Evidence that MHC
class I interactions are not required for long-term main-
tenance of memory T cells is based on the ability of
memory T cells to divide by homeostatic proliferation
and maintain elevated precursor frequencies in the
absence of MHC class I [10,11]. In addition, cytokine
production following in vitro restimulation with cognate
antigen suggests the functional capacity of these memory
CD8+ T cells is intact. Importantly, we have shown
that memory T cell pools exhibiting substantial per-
turbation mediate a reduced capacity to participate in
a recall response, despite being present in large num-
bers and retaining the capacity to secrete IFNγ and
TNFα ex vivo [15]. Therefore, it is possible that booster
vaccinations could be important for restoring effective
memory T cell populations and promoting long-term
maintenance.

Conclusions
The findings from this study suggest that the mainten-
ance of the long-term memory T cell pool generated fol-
lowing an acute viral infection deteriorates over time,
with perturbations beginning as early as 8 months post
infection. These perturbations can lead to a substantially
impaired capacity to mount recall responses. Importantly
we demonstrated the potential for antigen restimulation
to restore immune responsive memory T cells. Thus,
these results have important implications for vaccine
design, particularly with respect to booster vaccination
regimes that could overcome the increasingly dysregu-
lated immune response in the elderly.

Materials and methods
Mice, viruses, and infections
C57BL/6 and B6.SJL-Ptprca Pep3/BoyJ (CD45.1) mice
were purchased from The Jackson Laboratory and re-
derived stocks were maintained at the Trudeau Institute.
Sendai virus (Enders strain) was grown, stored, and titered
as previously described [22]. To facilitate intranasal infec-
tions, mice were anesthetized with 2,2,2-tribromoethanol
(200mg/kg) and virus was administered in a volume of
30μL. For analysis of long-term memory T cell responses,
two cohorts of 200 and 100 6–8 week old C57BL/6 mice
were intranasally infected with 250 50% egg infectious
doses (EID50) of Sendai virus. All animal studies were
approved by the Trudeau Institute Animal Care and Use
Committee.
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Tissue harvest
For serial bleeds, peripheral blood (approximately 100μl)
was obtained by nicking the tail vein and diluted 1:2 in
PBS containing 10U/ml heparin. For endpoint assays,
cells were isolated from the spleen by mechanical dis-
ruption. Following red blood cell lysis with ammonium
buffered chloride, live cell numbers were determined by
counting and trypan blue exclusion.
Flow cytometry
Single cell suspensions were incubated with Fc-block
(anti-CD16/32) for 15 minutes on ice followed by staining
with tetramer reagents (SenNP324-332K

b, 5HNP324-332K
b,

8ENP324-332K
b) for 1 hour at room temperature. Tetra-

mers were generated by the Trudeau Institute Molecular
Biology Core. Tetramer-labeled cells were incubated with
antibodies to surface proteins for 30 minutes on ice.
Antibodies were purchased from BD Biosciences (All
TCR Vβ antibodies, CD45.2) and eBioscience (CD8,
CD44). Samples were run on a FACS Canto II flow cyt-
ometer (BD Biosciences) and data were analyzed with
Flow Jo software (TreeStar).

CD8 T cell enrichment and adoptive transfer
For CD8+ T cell enrichment, total splenocytes were
stained with Biotin Mouse CD8 T Lymphocyte Enrich-
ment Cocktail (BD Biosciences) per manufacture’s
instructions and CD8+ T cells were negatively selected
using magnetic beads. An aliquot of enriched cells was
stained with NP324-332K

b and 5HNP324-332K
b tetramer as

described above to determine the number of Sendai-
specific CD8+ T cells. To assess responses to antigen,
1×104 Sendai-specific CD8+ T cells were intravenously
transferred into naive B6 CD45.1 recipients and then
intranasally challenged with 250 EID50 of Sendai virus
one day later. On day 13 post-infection, lymphocytes
were isolated from various tissues and host and donor
Sendai-specific cells were identified by flow cytometry.
The relative response in each tissue was calculated
from the frequency of Sendai NP324–332/K

b- and
5HNP324-332K

b-specific T cells. To assess homeostatic
proliferation, 5×104 Sendai-specific CD8+ T cells were
intravenously transferred into naïve B6 CD45.1 recipients
that were exposed to 600 cGy whole body irradiation. On
day 30 post transfer, lymphocytes were isolated and the
relative responses were determined as described above.

Intracellular cytokine staining
For measurement of cytokine production, single cell sus-
pensions were incubated with NP324-332/K

b, 5HNP324-332K
b

or control peptides as previously described [23]. Cells
were stained for surface markers, fixed and permeabilized
(CytoFix/CytoPerm kit, BD Biosciences), and stained for
intracellular cytokines with antibodies to IFN-γ (BD
biosciences).
Statistics
Statistical analysis was performed with Prism GraphPad
software, and significance was determined by an un-
paired two-tailed Student’s t test. P-values less than 0.05
was considered significant.
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