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Abstract

In an effort to understand the mechanisms underlying the high prevalence of gastrointestinal tract disorders in old
age, we investigated the expression of intestinal antimicrobial peptides in the terminal small intestine of aged mice.
Our results show that old mice have reduced transcript levels of ileal α-defensins and lysozyme, two important types of
intestinal antimicrobial peptides produced by Paneth cells. In contrast, expression of the C-type lectins Reg3b and Reg3g,
as well as β-defensin 1, angiogenin 4 and Relmb, which are made by several epithelial cell types, was significantly
upregulated in aged animals suggesting an ongoing response to epithelial distress. Those changes in antimicrobial
peptide gene expression associated with histological damage of the ileal epithelium and subtle modifications in the
composition of the commensal microbiota. Our findings suggest that dysregulation of antimicrobial peptides expression
is a feature of homeostasis disruption in the aged intestine and may contribute to geriatric gastrointestinal dysfunction.
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Aging is associated with a higher frequency of disorders
of the gastrointestinal tract (GIT), which are important
causes of morbidity in the elderly population [1]. The
GIT is constantly exposed to dietary antigens and tril-
lions of commensals and pathogenic microorganisms,
which pose a tremendous immunological challenge. The
intestinal epithelium deals with this challenge via the in-
testinal epithelial barrier, a functional entity composed
by the epithelial cells, the mucus layer, the mucosal
lymphoid tissue, a full repertoire of effector immune
cells, and secreted immunoglobulins and antimicrobial
peptides and proteins (AMPP) [2]. Defects of the intes-
tinal epithelial barrier integrity may lead to increased
permeability and inflammation [2, 3] and have been pro-
posed as important contributing factors to geriatric
gastrointestinal dysfunction [4, 5].
It is not currently known whether alteration in the syn-

thesis of intestinal AMPP is a distinctive feature of gastro-
intestinal aging. Intestinal AMPP are produced by
epithelial cells of the GIT [6]. AMPP have been associated

with the control of commensal microbes [7, 8] as well as
the defense from enteric infections [9–11], they can affect
the composition of the intestinal microbiota and thus, its
many functions in host’s metabolism and physiology [12].
AMPP are critical for the maintenance of the intestinal
barrier and the immunological homeostasis of the GIT.
We used aged and young C57BL/6 mice (104 and

20 weeks average age, respectively) as a model to investi-
gate changes in the baseline synthesis of ileal AMPP in
old age. The groups were composed each of eight fe-
males and eight males, for a total of sixteen animals per
age group. All animals used in this work were naive and
apparently healthy at the time of the study. Ilea from
aged mice showed distinct histological features, charac-
terized by a reduction in the number and length of villi
(Fig. 1a-c), various degrees of epithelial villi degener-
ation, generally more pronounced in females, (Fig. 1d-g)
and ileal crypt deepening and ballooning (Fig. 1f, g).
Atypical goblet-like cells containing Paneth cell-like eo-
sinophilic granules were observed close to the tip of the
villi (Fig. 1h), likely representing cells of the secretory
lineage that migrated towards the villi tip but failed to
undergo terminal differentiation. The secretory granules
of Paneth cells appeared larger and very prominent in
aged mice (Fig. 1f, j-l) and were surrounded by a thick
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layer of (unidentified) dense material, distinguishable at
the ultrastructural level (Fig. 1j-l). Old mice showed a
slight increase in the number of Paneth cells per crypt

(Fig. 1m) and goblet cells per villus (Fig. 1n-q). Alcian
blue staining revealed larger goblet cell mucin granules,
also more intensely stained (Fig. 1o-q) indicating an

Fig. 1 Representative H&E stained cross-sections from the ileum of young a and old b mice. c Average number of villi per section and villi lenght. d-f
Representative H&E stained ileal sections from young d and old e-f mice showing villi degeneration and crypt enlargement. g Crypts depth in old vs.
young animals. h Arrowheads point to goblet-like cells containing eosinophilic secretory granules. i-l Electron micrographs of Paneth cell secretory
granules from a young i and three old animals j-l. m Average number of Paneth cells per crypt. n Average number of goblet cells per villus. o-q Alcian
blue stained ileal sections from a young o and two old p-q animals showing goblet cell hyperplasia and intracellular accumulation of mucin. Histology
pictures were taken using a NanoZoomer 2.0 slide scanner (Hamamatsu). Measurements of villi length, villi number and crypt depth were done using
NDP.view 2 software (Hamamatsu). Paneth and goblet cell counts were recorded in 40–60 well-preserved villi-crypt axes per animal. r Relative transcript
levels for ileal AMPP genes, determined by qPCR using the ddCt method corrected for primer efficiencies according to Pfaffl et al. [22], (n = 16 animals/
group, primer sequences and methods are described in [23]). Statistical differences (Mann–Whitney U test) and are shown by asterisks (*p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001). Scale bars are: (a, b: 500 μm); (d, e, o, p, q: 50 μm); (f, h: 25 μm); (i, j, k, l: 500 nm)
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increase in mucin abundance in the ilea of old mice.
The differences in mucin content were not due to differ-
ential Muc2 gene transcription, as equal transcript levels
of Muc2 were found by qPCR in young and old animals
(data not shown) indicating regulation at the post-
transcriptional level, possibly defective secretion leading
to intracellular accumulation of mucins. Such a disparity
between Muc2 transcription and mucin levels/mucus
distribution has been observed by others in Reg3g-
defficient mice [13].
Based on their recognized importance for intestinal

homeostasis and defense, several AMPP from different
functional classes (α-defensins, β-defensins, C-type lectins,
RNAses and the cell wall-degrading enzyme lysozyme)
were chosen for comparative gene expression analyses in
the terminal ileum. The relative transcript levels in old ani-
mals (Fig. 1r) showed various degrees of significant differ-
ences with the younger animals (no significant differences
were observed between genders). In contrast with the in-
creased Paneth cell numbers, transcript levels for Defa20 (a
member of the α-defensins group produced exclusively by
Paneth cells) and those of lysozyme (Lyz, another exclusive
Paneth cell product) were slightly but significantly de-
creased. This, together with the histological and electron
microscopy data is suggestive of Paneth cell dysfunction in
the aged mice. In contrast, transcription of the genes Reg3b
and Reg3g (coding for the C-type lectins Reg3b and Reg3g)
was significantly increased, together with the resistin-like
molecule beta (Relmb, gene Retnlb), β-defensin 1 (Defb1)

and the RNAse angiogenin 4 (Ang4). The upregulation of
expression of these antimicrobial genes, particularly the
striking induction of β-defensin 1 and Relmb, together with
the changes in Paneth and goblet cell numbers has been
previously associated with gastrointestinal inflammation
[14–16] and is strongly suggestive of ongoing epithelial dis-
tress in the ileum of aged mice.
The intestinal microbiota is reported to change with

age, although the mechanisms underlying those changes
are not fully understood (reviewed in [17]). Given the po-
tential disrupting effect of altered AMPP expression over
microbial communities, we analyzed the composition of
the bacterial population by sequencing the V4 region of
the 16S rRNA genes. We estimated the alpha diversity by
calculating the Inverse Simpson index (an estimator of the
richness in a community with uniform evenness) and the
Chao1 index (Fig. 2a, b). There was a decrease in the mi-
crobial diversity of old mice, statistically significant (Krus-
kal-Wallis test, p = 0.021) with the Chao1 index, which
estimates the total species richness taking into account
low-abundance taxonomic groups. Linear discriminant
analysis effect size (LefSE) was used to identify OTU (Op-
erational Taxonomic Units) characterizing the two groups.
The relative abundance of the most predominant OTU
remained unchanged between young and old mice and
analyses of molecular variance (AMOVA) of the β-
diversity metrics showed no differences between the 2
groups (Table 1). However, the proportion of a group of
less-abundant OTU was significantly modified (Fig. 2c). In

Fig. 2 a Inverse Simpson index (15.41 and 9.92 in young and old mice, respectively, Kruskal-Wallis test, p = 0.24). b Chao1 index (727.85 and 553.44 in
young and old mice, respectively, Kruskal-Wallis test, p = 0.021). c Linear Discriminant scores based on LefSe analysis showing the OTU more represented
in young (green) and old (red) mice. Total genomic DNA extraction and sequencing of the V4 region of the bacterial 16 s rRNA gene was performed by
Microbiome Insights (Vancouver, Canada). Sequences were analyzed using the software package Mothur (version 1.38.1) [24] according to the Standard
Operating Procedure [25]. Alignment was performed using Silva database v123, reduced to the V4 region. Chimeras were removed using UCHIME [26].
Sequencing errors leading to rare variants were reduced by pre-clustering sequences into groups. Non-bacterial sequences were removed and the
bacterial ones were classified using the RDB trainset no. 14. Differences in the abundance of OTUs were detected using Metastats [27]
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general, several OTU belonging to the Firmicutes phylum
were less abundant in old mice whereas some members of
the phylum Bacteroidetes were increased (e. g., the family
Porphyromonadaceae, which has been previously associ-
ated with cognitive difficulties in elderly patients with cir-
rhosis [18]). The functional consequences of these
changes are unclear and require further study.
Our findings show that the homeostatic expression of

AMPP is altered in the aged ileum. Those alterations
were concurrent with epithelial degeneration, a slight in-
crease in the number of Paneth and goblet cells, and
mild shifts in the commensal microbial composition.
However, it is currently unclear how these alterations re-
late to each other, namely whether they are linked or in-
dependent events and which ones might be cause or
consequence. In any case, our findings open the interest-
ing possibility of a potential contribution of altered
AMPP expression to the gastrointestinal dysfunction of
old age and pose the question of why and how the ob-
served alterations are happening in the first place. Envir-
onmental factors such as diet and polymedication are
thought to influence significantly the susceptibility of
elderly persons to gastrointestinal disorders [1]. For ex-
ample, certain diets can drive the microbiota towards a
more pro-inflammatory composition and disturb its deli-
cate equilibrium with the gut immune system effectively
promoting dysfunction of the intestinal barrier [19].
However, the environmental argument does not easily
hold for experimental animals kept in a controlled envir-
onment (including the diet), indicating an important in-
volvement of fundamental host-dependent factors. Based
on our data, we propose that key primary disrupting
events are related to age-acquired defects in the differen-
tiation and/or function of the secretory cell lineage, par-
ticularly Paneth and goblet cells, responsible for the
secretion of multiple AMPP and mucins. Such defects
would have major detrimental consequences for the in-
tegrity and function of the intestinal barrier [20, 21] and
might ultimately favor the development of gastrointes-
tinal inflammatory and physiological disorders.
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