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Aged mice display altered numbers and
phenotype of basophils, and bone marrow-
derived basophil activation, with a limited
role for aging-associated microbiota
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Abstract

Background: The influence of age on basophils is poorly understood, as well as the effect of aging-associated
microbiota on basophils. Therefore, we studied the influence of aging and aging-associated microbiota on basophil
frequency and phenotype, and differentiation from basophil precursors.

Results: Basophils became more abundant in bone marrow (BM) and spleens of 19-month-old mice compared with 4-
month-old mice. Aged basophils tended to express less CD200R3 and more CD123, both in BM and spleen. Differences
in microbiota composition with aging were confirmed by 16S sequencing. Microbiota transfers from young and old
mice to germ-free recipients revealed that CD11b tended to be lowered on splenic basophils by aging-
associated microbiota. Furthermore, abundance of Alistipes, Oscillibacter, Bacteroidetes RC9 gut group, and S24—
7 family positively correlated and CD123 expression, whereas Akkermansia abundance negatively correlated with basophils
numbers.

Subsequently, we purified FceRla*CD11¢"CD117~ BM-derived basophils and found that those from aged mice
expressed lower levels of CD11b upon stimulation. Higher frequencies of IL-4* basophils were generated from
basophil precursors of aged mice, which could be reproduced in basophils derived from germ-free recipients

of aging-associated microbiota.

observed in BM-derived basophils from aged mice.

Conclusions: Collectively, these results show the influence of aging on basophils. Furthermore, this study
shows that aging-associated microbiota altered activation of BM-derived basophils in a similar fashion as
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Background

The human adult gut contains about 10'*~10'* bacteria
[1, 2], which is comparable to the number of human
cells in the total body of a 30-year-old adult [3]. These
commensal gut microbiota modulate the immune sys-
tem [4] and contribute to immune homeostasis in the
mucosal immune system [5]. Gut microbiota play an
important modulatory role beyond mucosal immunity,
for instance by changing the stem cell niche in the bone
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marrow (BM) [6]. Furthermore, absence of microbe-de-
rived peptidoglycan in the circulation impairs the killing
by BM neutrophils of Salmonella pneumoniae and
Staphylococcus aureus [7]. In addition, in the absence of
microbiota, CD123 (IL-3Ra) expression on basophil pre-
cursors was upregulated, thereby enhancing their
responsiveness to interleukin (IL) 3 [8].

During aging the immune system develops several
defects and undergoes various changes in differentiation,
distribution, and activation [9]. Anti-parasitic immune
responses in aged mice are impaired [10], which may
indicate age-related changes in basophil function [11].
With aging, gut microbiota composition changes [12].
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Basophil hematopoiesis and function are regulated by
gut microbiota. Absence of gut microbiota lead to in-
creased basophil frequencies and enhanced T helper
(Th) 2 immune responses [8]. In addition, basophils
express Toll-like receptor (TLR) 2 and TLR4, and
respond to microbial ligands like peptidoglycan [13] and
lipopolysaccharide (LPS) [14]. Histamine release and
sensitivity of basophils from elderly were reported to be
increased upon anti-immunoglobulin (Ig) E stimulation
[15], but in a different study, no age-related difference
was found in histamine release of human blood baso-
phils upon anti-IgE or anti-IgG4 stimulation [16]. Baso-
phil counts were not associated with frailty or mortality
in elderly women [17, 18]. Basophil frequencies and
absolute numbers decreased in blood from healthy eld-
erly volunteers and patients suffering from Alzheimer’s
disease [19, 20]. It is, however, largely unknown what
effect age has on basophil differentiation and function.

Basophils are granulocytes which are involved in mount-
ing and perpetuating Th2-mediated responses [21].
Basophils are an important source of IL-4 and IL-13,
which direct the immune response towards Th2 type re-
sponses [22]. After IgD crosslinking, basophils produced
IL-1, IL-4 and B cell activating factor (BAFF), supporting
B cell functions [23]. Basophils are the major source of
IL-4 after Streptococcus pneumoniae infection, contribut-
ing to humoral memory immune responses [24]. In
addition, the basophil is crucial in the pathophysiology of
systemic lupus erythematosus [25, 26], and its counts are
a marker for disease activity [27]. Recently, basophil infil-
tration into tumors after depletion of regulatory T cells
was implicated in tumor rejection via C-C motif chemo-
kine ligand (CCL) 3- and CCL4-mediated recruitment of
CD8" T cells to tumors [28], indicating a role beyond
classical Th2 responses.

Basophil differentiation and functions are dependent
on IL-3 or thymic stromal lymphopoietin (TSLP) [29].
Basophils can be activated in an IgE-dependent and
IgE-independent manner. Regarding IgE-dependent
activation, FceRla crosslinking by complexes of IgE and
antigen activates basophils, resulting in IL-4 and IL-13
production [30]. Basophils express IL-18R and IL-33R
(ST2), and upon stimulation with IL-18 and IL-33, baso-
phils produce IL-4, IL-6, IL-13, granulocyte-macrophage
colony stimulating factor (GM-CSF), and several chemo-
kines [31]. This effect is further enhanced in the
presence of IL-3 [32]. CD200R3-mediated activation of
basophils leads to IL-4 production in vitro, and to ana-
phylaxis in vivo [33].

Here we studied the influence of the aging-associated
microbiota on basophil frequency and phenotype, and
differentiation from precursors of basophils. We com-
pared basophils from young germ-free recipients of
microbiota of 4-month-old to young germ-free
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recipients of microbiota of 18-month-old mice. In
addition, we studied changes in frequency and pheno-
type of basophils in BM and spleen, correlation between
microbial genera and basophils, and changes in differen-
tiation from precursors of basophils during aging by
comparing 4-month-old and 18-month-old mice.

Results

Basophils become more abundant during aging and
display a changed phenotype

To identify the effect of age on basophil frequencies and
phenotype, we analyzed frequencies of lineage (Lin)
“CD117 FceRIa"CD200R3" basophils in mouse BM
(Fig. 1a) and spleen (Fig. 1d), as well as absolute num-
bers. By comparing young and old mice, we found that
the frequencies of basophils in the BM were similar
(Fig. 1c), but were increased in the spleen of aged
mice (p=0.03; Fig. 1f), whereas absolute numbers
were increased in BM (p = 0.02) and spleen (p = 0.06;
Fig. 1c, f). The phenotype of basophils changed in
both BM and spleen. CD200R3 expression tended to
decrease on basophils in the BM (p < 0.08; Fig. 1b, ¢) and
was decreased in the spleen of aged mice (p = 0.04; Fig. le,
f), but CD123 expression was increased in aged basophils
in the BM (p=0.04) and tended to be increased in the
spleen (p=0.07). No age-related changes in FceRla,
TSLPR, CD11b, and IL-33R (Fig. 1c, f) were observed.

Microbiota composition changes with age and after
microbiota transfer of young and aged mice

Because it has been reported that basophils are regulated
by gut microbiota [8], we determined differences in mi-
crobial genera (L6) between young and aged mice by
16S sequencing. Alistipes, Bacteroidetes RC9 gut group,
8§24-7 family (L5), and Oscillibacter were significantly
more abundant in aged mice compared with young
mice, whereas Lactobacillus was significantly less abun-
dant (Fig. 2a).

Next, we questioned whether the differences in
basophils with aging are caused by gut microbiota. To
this end, microbiota obtained from fecal samples of
4-month-old or 18-month-old mice were transferred
to 3-month-old germ-free mice. After 1 week and
after 4 weeks, we determined differences in microbial
genera between germ-free recipients of young or old
microbiota. After 1 week, the abundance of Alistipes,
Ruminococcus, and Akkermansia was significantly
decreased in recipients of old microbiota, compared
with young microbiota, whereas Lactobacillus abun-
dance tended to increase (Fig. 2b). After 4 weeks, the
abundance of Prevotellaceae unclassified was signifi-
cantly lower in recipients of old microbiota, compared
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Fig. 1 Effect of age on basophils in the bone marrow and the spleen. a Flow cytometric analysis of basophils in the BM, defined as live
Lin"FceRla"CD117"CD200R3". b Surface expression on BM basophils of CD200R3 and CD123. Representative example of a young (open
blue) and an old mouse (open red). All BM cells from the same old (filled red) are shown in the CD200R3 plot. Isotype staining for CD123 is shown in
grey. ¢ Quantification of mean frequencies and absolute numbers of BM basophils or MFI on BM basophils of FceRla, CD200R3, IL-33R, and TSLPR. d
Flow cytometric analysis of basophils in the spleen, defined as live Lin"FceRIa™CD117-CD200R3™. e Surface expression on spleen basophils of CD200R3
and CD123. Representative example of a young (open blue) and an old mouse (open red). All spleen cells from the same old (filled red) are shown in
the CD200R3 plot. Isotype staining for CD123 is shown in grey. f Quantification of mean frequencies and absolute numbers of spleen basophils or MFI
on spleen basophils of FceRla, CD200R3, TSLPR, IL-33R, and CD11b. * = p < 0.05. Data represent n = 10 mice per group. BM = bone marrow; L/D = live/
dead stain; Lin = lineage (CD3, CD4, CD8, CD11¢, CD19, CD45R/B220, Ly6C/Ly6G (Gr-1), NK1.1, TER-119), with CD11b additionally in BM; MFI = median

fluorescence intensity; SSC = side scatter

with young microbiota, and the abundance of Desulfo-
vibrio was significantly higher (Fig. 2c).

No difference in basophil frequencies and phenotype
after microbiota transfer of young and aged mice

After microbiota transfers, we found no significant
effects on frequencies, numbers, nor on phenotype of
basophils (Fig. 3a, b). Both BM and spleen had similar
basophil frequencies and numbers in the young or old
microbiota recipients (Fig. 3a, b). In addition, no
difference in FceRla, TSLPR, CD200R3, IL-33R, and
CD123 was observed between young and aged
recipient-mice. The only difference we observed was

in splenic basophils that tended to express less CD11b
in recipients of 18-month-old microbiota (p <0.06;
Fig. 3b). Because we did not observe changes in baso-
phil distribution and phenotype after microbiota
transfers, we checked whether the distribution and
phenotype differed between conventional and germ-
free mice. We found no differences between germ-free
and conventional mice in terms of frequencies and ab-
solute numbers of basophils. We confirmed that the
absence of microbiota changed the phenotype of baso-
phils. In particular, FceRla expression was more than
2-fold decreased on BM and splenic basophils from
germ-free mice, in comparison with conventional mice
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Fig. 2 Effect of age and age-related microbiota on microbiota composition. a Bacterial genera that were significantly different in abundance in young
or old mice. b-c Bacterial genera that were significantly different between germ-free recipients of young or old microbiota, after 1 week or after
4 weeks of transfer. +O = microbiota derived from old mouse; +Y = microbiota derived from young mouse. * = p < 0.05; ** = p < 0.01; *** =p < 0001

(Fig. 3c, d). CD200R3 and IL-33R expression on
splenic basophils was also decreased in germ-free mice
(Fig. 3d).

Association between basophil numbers or basophil
phenotype, and abundance of microbial genera

Based on the microbial genera that were significantly
different with aging or after microbiota transfers (Fig. 2),
we subsequently investigated the association between
gut microbiota and basophil frequencies and phenotype.
We found that abundance of Alistipes, Oscillibacter,
Bacteroidetes RC9 gut group, and S24—7 family positively
correlated with CD123 expression in BM and/or spleen
(Fig. 4a, b, ¢, d). The abundance of Desulfovibrio
positively correlated with IL-33R expression on baso-
phils in BM and spleen (Fig. 4e). In addition, we found
that abundance of Lactobacillus positively correlated
with CD11b expression by splenic basophils (Fig. 4f). Fi-
nally, Akkermansia abundance negatively correlated with
basophil numbers in BM and showed a similar tendency
with splenic basophil numbers (Fig. 4g).

In vitro function of bone marrow-derived basophils from
old mice is impaired in part due to microbiota

Although frequency and the majority of the phenotypical
markers were not influenced by the age of the micro-
biota, we wished to exclude that other differential func-
tional parameters of the basophils were still intact. To
this end we differentiated basophils in vitro from bone
marrow and subsequently tested the functional response
of purified basophils on several stimuli.

Differentiation adequacy into FceRIa"CD117~ baso-
phils (and CD200R3" basophils) or FceRla"CD117" mast
cells was determined by flow cytometry after 4, 7, and
10 days of culture (Fig. 5a). No differences in expansion
of the whole culture, or differentiation were observed
among the experimental groups (Table 1; Fig. 5b). About
98% of basophils were CD200R3" after 10 days of cul-
ture (data not shown).

After 10 days of culturing BM cells with IL-3, we iso-
lated the basophils (Fig. 6a). Purified BM-derived baso-
phils (BMB) were overnight cultured under five
different conditions: medium, IL-18 + IL-33, TSLP, IgE,
or CD200R3. These conditions mimic different routes
of activation of basophils [21]. The five different condi-
tions resulted in distinct basophil phenotypes. IL-18 +
IL-33 and CD200R3 were most potent in the induction
of IL-4 and IL-13 by the basophils (Fig. 6b). For Ki-67,
IL-4, and IL-13, but not CD11b expression, we ob-
served a stimulus-dependent effect (Fig. 6¢).

CD11b expression was decreased in BMB derived from
4-month-old mice compared with those from 18-month-
old mice (p<0.001; Fig. 6¢c). This was not microbiota-
dependent, because CD11b was not altered in BMB de-
rived from germ-free recipients of old microbiota com-
pared with recipients of young microbiota (Fig. 6d). We
originally planned to use Ki-67 as a measure of prolifera-
tion [34], but this was not applicable as most BMB were
Ki-67" (Fig. 6b). We therefore focused on a distinct cell
population with high expression of Ki-67 (Ki-67") as
measure for proliferative activity. With aging, the fre-
quency of Ki-67"" BMB consistently increased under all
tested conditions (p <0.001; Fig. 6c). The frequency of
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Fig. 3 Effect of microbiota transfer of young and old mice to germ-free mice on basophil frequencies and phenotype in the bone marrow and the
spleen. a Quantification of mean frequencies and absolute numbers of BM basophils or median fluorescence intensity (MFI) on BM basophils of FceRla,
CD200R3, CD123, IL-33R, and TSLPR. b Quantification of mean frequencies of spleen basophils or MFI on spleen basophils of FceRla, CD200R3, CD123,
TSLPR, IL-33R, and CD11b. ¢ Quantification of mean frequencies and absolute numbers of BM basophils or median fluorescence intensity (MFl) on BM
basophils of FceRla, CD200R3, CD123, IL-33R, and TSLPR. d Quantification of mean frequencies of spleen basophils or MFI on spleen basophils
of FceRla, CD200R3, CD123, TSLPR, IL-33R, and CD11b. Data represent n= 10 mice per group (panel a and b) and n =5 mice per group (panel
c and d). BM = bone marrow; Conv = conventional; GF = germ-free; O = microbiota derived from old mouse; Y = microbiota derived from young mouse.

IL-4" cells increased in old BMB (p < 0.05; Fig. 6¢). This
seemed to be influenced by microbiota, because similar
differences were observed in BMB from recipients of old
microbiota (p < 0.01; Fig. 6d). The IL-13" frequency did
not change with age (Fig. 6¢), but did increase upon
transfer of old versus young microbiota (p <0.01; Fig.
6d). We compared the five culture conditions in aging,
and after transfer of microbiota, but found the most pro-
nounced effects in cultures stimulated with CD200R3,
IL-18 + IL-33, and TSLP (Fig. 6¢-d).

Discussion

In this study, we found that basophil frequencies, num-
bers, and phenotype in the spleen change in mice during
aging. Less effects on phenotype were found in the BM,
although absolute numbers of basophils increased. This
however should not be interpreted as a suggestion that
no aging effects in the BM exist, as significant effects of
age were found on the in vitro activation of basophils
differentiated from precursors in the BM. Partly these in

vitro effects were caused by the aging microbiota, as
age-dependent changes in the activation of BM-derived
basophil were also observed in young germ-free recipi-
ents of microbiota of 18-month-old mice. Fecal micro-
biota analysis showed that the microbiota composition
significantly changed with age, and after microbiota
transfers. Several microbial genera were correlated with
basophil frequencies and phenotype.

Our report confirms age-related effects on basophils,
showing for the first time that basophil phenotype
changes. Intriguingly, CD123 expression by basophils
from old mice consistently tended to increase. CD123 is
crucial for IL-3 signaling and basophil hematopoiesis
[29], and might explain the increased basophil numbers.
IL-3 is, in higher amounts, also able to induce IL-4 pro-
duction in basophils via the IL-3 receptor [35]. Aged ba-
sophils showed a tendency to lower expression of
CD200R3, which inhibits FceRla-mediated activation of
basophils [36]. CD200R3 also activates basophils to pro-
duce IL-4 and to degranulate [33]. Lower CD200R3 ex-
pression by basophils from aged mice (versus basophils



van Beek et al. Immunity & Ageing

(2018) 15:32

Page 6 of 11

1000

800

2004

Alistipes

-+ CD123 r=0
(BM) =0.0050

Oscillibacter
1000

800

C

10004
800

600

Bacteroidetes RC9 gut group

= CD123 8%

(BM) p=0.022

$24-7 family

-+ CD123 r=0.37
(spleen) p=0.020

800

600

£ 400

200

Relative abundance (proportion)

Desulfovibrio

Relative abundance (proportion)

F

3000

Lactobacillus

G

6

Relative abundance (proportion)

Akkermansia

Relative abundance (proportion)

Relative abundance (proportion)

= CD11b
= IL33R = L]
] (BM) o 5 (spleen) 2 038
r=0.35
-+ # basophil
= p=0.030 A
— N —-e # basophil
. 2000 o 4 (spleen)
. = e r=0.28
° p=0.083
z .
1 N e
2 —_—
1000 * 2 “ 04 . .
o
- = IL-33R r=0.34 e %o g -
(spleen) p=0.034 P
3
.
0.00 0 ‘05 0 ‘10 n,'15 ﬂ,IZD ﬂ,I25 oo 0:2 O'A 0‘6 D‘E 10 0.00 0 ;)5 0 I10 0 ‘15

Relative abundance (proportion)

-+ CD123 r=0.43 -= CD123 r=0.33
(spleen) p=0.0065 200 (spleen) p=0.039 200
= CD123  r=0.39 & .
(spleen) p=0.015
0.000 0.005 0.010 0.015 0020  0.00 0.01 0.02 003 0.000 0.005 0.010 0.015 0020 00 01 02 03

Relative abundance (proportion)

Fig. 4 Correlation between basophil frequencies and phenotype, and abundance of microbial genera. a-d Spearman correlation between abundance
of indicated microbial genera and CD123 expression in BM (orange) and spleen (blue). e-f Spearman correlation between abundance of
indicated microbial genera and IL-33R or CD11b expression on BM and splenic basophils. g Spearman correlation between abundance of

Akkermansia and absolute basophil numbers in BM and spleen. # = absolute cell counts; BM = bone marrow; MFI = median fluorescence intensity

A

Day 4

Day 7

Day 10

N~
-
by 3 = =
[a]
ol 3 3
T T ™™ T T T T T T T T ™T T T TTTTY T T T T ™T T T T T
FceRla
Expansion Basophil differentiation Mast cell differentiation
% 80 % 3 Young
(%] o
= ° k-] . Od
2 2 60 2 3 o+
5 2 2
o = ] L)
: 3% -
£ @ 2
o = 20 ]
s - 2
= ] %
g0 g
4 7 10 ° 4 7 10 < 4 7 10
Culture time (days) Culture time (days) Culture time (days)

Fig. 5 Effect of age and age-related microbiota on IL-3 BM cultures. a Representative gating of IL-3-driven BM culture, in which all live cells were

gated for CD117 and FceRla. Basophils were defined as FceRla*CD117~ and mast cells as FceRla*CD117*. b Effect of age and microbiota on BM culture
expansion and basophil and mast cell differentiation. Data represent n =4 cultures per group for day 4 and n=5 cultures per group for day 7 and 10
(with each culture derived from a different mouse). O = microbiota derived from old mouse; Y = microbiota derived from young mouse




van Beek et al. Immunity & Ageing (2018) 15:32

Page 7 of 11

2000+ Interaction: p=0.90

Stimulus: p=0.19

% of basophils

Interaction: p=0.54
Stimulus: p=0.38
Microbiota: p=0.67

% of basophils

ANOVA; Y = microbiota derived from young mouse

Stimulus: p=0.0033

. 104 : == Od
TWA
54 Interaction: p=0.65 5
0 0 0 0

Interaction: p=0.95
Stimulus: p=0.015
Microbiota: p=0.79

3 — Young-
- = 0ld

© A Ki-67+*

-

s

Q

(%]

Q? 4

~

=

s

aQ

o

T TR T T T
c FceRla Ki-67
P
CD11b Ki-67 1La* 1L-13*
6000 . 154 15 25
33 Young T =3 Young =3 Young 20 =3 Young
4000y , . Od 104 . Od - Od
15
E TWA TWA TWA

Interaction: p=0.082 Interaction: p=0.91

Stimulus: p=0.0010 5 Stimulus: p<0.001

Age: p<0.001 Age: p<0.001 Age: p=0.039 Age: p=0.74
cD11b 67+
D Ki-67 L3t
15+ 25 =
= +Y 3 o+ [— I 2 [ — %
= 0 104 = -0 ) = 0
15
TWA TWA TWA TWA

Interaction: p=0.52 10
Stimulus: p=0.019 5
Microbiota: p=0.0015

o]

LD DR &
IR

¥
Y

Interaction: p=0.095
Stimulus: p<0.001
Microbiota: p=0.0052
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from young mice) might indicate that aged basophils are
less readily activated [33]. Together, these age-related
changes might indicate an increased sensitivity to IL-3,
and at the same time an altered threshold for activation.
Thus, we were able to show differences in BM and
spleen basophils with age.

Recently, we have shown a correlation between B cell
precursors and abundance of specific microbial genera
[37]. Similarly, in this study, we found an association be-
tween specific microbial genera and basophil frequencies
and phenotype (both in BM and spleen). Most strikingly,
the abundance of Alistipes, Oscillibacter, Bacteroidetes
RC9 gut group, and S24-7 family positively correlated
with CD123 expression in BM and spleen. As indicated
above, CD123 is crucial for basophil hematopoiesis and
function. Transfer of specific microbiota into germ-free
recipient mice would further support the association of
microbial genera with basophil frequencies and pheno-
type we found in this study. Because basophils express
TLR2 and TLR4 [13], it would be of high interest to

determine expression of these receptors as well as re-
sponsiveness to their ligands in the context of aging.

To gain insight into the effect of aging on the precur-
sors of basophils, we used IL-3-dependent BM cultures
as a proxy (Fig. 5). First, we improved the method to
generate basophils by at least 70-fold compared with a
recent, detailed protocol [31]. Yoshimoto et al (2012) re-
ported using femurs and tibias of ten 9- to 12-month-
old Balb/c male mice. A conservative estimation of the
starting number of BM cells in their cultures is 4 x 108,
which resulted in 20-40 x 10° cultured cells (culture effi-
ciency <10%). After purification, 1-4 x 10° basophils
were collected (purification efficiency <10%). Under the
best conditions, the mentioned protocol ends with a 1%
yield. In our hands, the culture efficiency of the im-
proved BMB generation protocol was higher than previ-
ously reported, with each 10° BM cells generating on
average 2 x 10° cultured cells. Taking into account the
withdrawal of cells for direct assessment three times
during the culture, our culture efficiency was a bit
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Table 1 Average input, output, yield, and purity of basophils
from IL-3 BMB cultures

Group Input BM Output cultured  VYield pure Purity %
cells x10°  cells x10° basophils x10°

Young 56 (04) 11.6 (1.9 45(1.0) 97 (1)

Old 6.0 (0.0) 11.6 (1.1) 32(13) 97 (1)

+Y 6.0 (0.0) 13.7 (1.6) 3702 97 (1)

+0 56 (04) 11.0 (0.7) 34 (1.0 95 (2)

Data represent 5 cultures per group (with each culture derived from a
different mouse). Standard error of the mean between brackets

BM bone marrow, BMB bone marrow-derived basophils, +O, microbiota
derived from old mouse, +Y microbiota derived from young mouse

higher than 200%. Our purification method, which in-
cludes dendritic cell removal, resulted in higher numbers
of pure basophils: we isolated on average 6.9 x 10° pure
basophils per 20 x 10° cultured cells (35% purification
efficiency). Regardless different origins of BM (Table 1),
our protocol ends with an average yield of 70%. The vast
difference between the yields are most likely explained
by the cell density at the start of the culture. Other dif-
ferences that might cause improved yield are mouse
strain, fresh versus frozen BM, and the purification
method. Thus, using our robust method, we were able
to assess basophil function by using a few million BM
cells as input. It is important to underline the import-
ance of excluding the adherent cells during the culture
and the targeted depletion of CD1lc" dendritic cells
during the isolation of BMB. This enables to specifically
look at BMB responses, without bystander effects of
stromal cells or dendritic cells.

We identified additional differences between young
and aged BMB (Fig. 6). CD11b expression was de-
creased, whereas IL-4" (but not IL-13") frequencies were
increased upon activation in BMB from aged mice. IL-4*
basophil frequencies were particularly increased after
CD200R3 stimulation, in line with previous studies [33].
BMB derived from germ-free recipients receiving micro-
biota of aged mice (versus microbiota of young mice)
also showed increased IL-4" basophil frequencies. Thus,
we found that microbiota from aged mice influence
basophil precursors and subsequent in vitro activation.

The functional implications of these findings remain
to be elucidated. It is conceivable that basophils may
differ in their functional response in vivo, because Hill et
al (2012) showed that antibiotics under steady state
conditions in vivo did not alter basophil frequencies in
lymph nodes. Basophil frequencies, however, were
increased after papain treatment in antibiotic-treated
mice (compared with control mice) [8]. Allergic chal-
lenges or helminth infections in young versus aged mice
would give insight in the functional consequences in
vivo of the observed changes between young and aged
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basophils, and after microbiota transfers of young and
aged mice.

Our study has a number of limitations: 1) Due to the
relatively small populations of basophils and the re-
quired numbers of aged and germ-free mice, we were
not able to sort basophils directly from spleen or bone
marrow to evaluate in vitro basophil function. 2) We
could not study alterations in in vivo production of e.g.
IL-4 by basophils with aging, as could be done by using
aged or germ-free IL-4-eGFP reporter mice. 3) We used
total aging-associated microbiota, rather than selected
microbial strains that were altered upon aging and cor-
related with basophil phenotype or numbers.

Conclusions

Our study shows that aged mice display increased
basophil numbers and altered phenotype, which seems
independent of aging-associated microbiota. In vitro
activation of BM-derived basophils is impaired with
aging, which in part is explained by aging-associated
microbiota. Further functional in vivo studies are war-
ranted to investigate the consequences of our findings
for Th2-mediated immune responses in aging.

Methods

Mice

Young and old wild-type C57Bl/6 mice were purchased
from Harlan (Horst, The Netherlands). Germ-free C57Bl/6
mice were generated at the Central Animal Laboratory of
the Radboud University Medical Center (Nijmegen, The
Netherlands). Mice were kept in individually ventilated
cages or sterile incubators, and were specific pathogen free
(SPF). All mice had free access to feed (ssniff, rat/mouse
maintenance V153X R/M-H) and water. All groups con-
sisted of # = 10 mice, unless otherwise mentioned. We have
used mice as an animal model, because most tools are avail-
able for this animal model. We have used 19—-20-months-old
mice as aged, because many age-related changes have been
reported to occur already at that age, and because tumor in-
cidence increases after 20 months [38, 39].

Microbiota transfers

Feces from 4-month-old and 18-month-old female mice
were freshly collected. Part of the feces was stored for
microbial analysis, the remaining part was mixed with
PBS. Three-month-old germ-free mice were adminis-
tered 200 pL of 100 mg/mL fecal solution by intragastric
gavage (20 mg/mouse). These mice were then housed in
IVC for another month.

Organ collection and cell suspensions
At 4-5 months or 19-20 months of age, mice were
anesthetized with isoflurane, bled, and sacrificed by
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cervical dislocation. Serum was collected by spinning the
clotted blood, and was stored at — 80 °C until further
analysis. Mice were inspected for visible tumors, which
lead to the exclusion of one aged mice. Femurs and
spleen of each mouse were isolated. Single-cell suspen-
sions of BM were obtained by flushing the femurs,
whereas the spleen was cut in pieces. Cells were then
passed through a cell strainer. Part of the BM cells were
frozen for later use in vitro.

Flow cytometry

Flow cytometry was performed using standard proce-
dures. After staining for surface markers, cells were
incubated with live/dead eFluor506 or eFluor520 stain
(Ebioscience). Cells were then fixed using the FoxP3/
Transcription Factor Staining Buffer kit (Ebioscience),
with the exception of the Golgi-Stop-treated cells. They
were processed using the Intracellular Fixation and
Permeabilization kit (Ebioscience) to preserve intracellu-
lar cytokines. Used antibodies are listed in Table 2. Flow
cytometric measurements were acquired by a FACS-
Canto II flow cytometry (BD Biosciences, Erembodegem,

Table 2 Used antibodies for flow cytometry and purification

Target Format Clone Company
CD3e FITC 145-2C11 BD
CD4 FITC H129.19 BD
CD8a FITC 53-6.7 BD
CD11b BV421/FITC M1/70 BD
CD11c Biotin/FITC HL3 BD
CD16/32 FITC/Purified 24G2 BD
cD19 FITC 103 Ebioscience
CD45R/B220 FITC RA3-6B2 BD
CD62L APC-Cy7 MEL-14 BD
CcD117 Biotin 2B8 BD
BV421 2B8 BioLegend
BV510 ACK2 BioLegend
CD123 Biotin 5B11 BD
PE 5811 Ebioscience
CD200R3 APC Ba13 BioLegend
FceRla Biotin/PE-Cy7 MAR-1 Ebioscience
IL-4 APC 11B11 Ebioscience
IL-13 PE-Cy7 eBio13A Ebioscience
IL-33R/ST2 PerCP-eFluor710 RMST2-2 Ebioscience
Ki-67 FITC SolA15 Ebioscience
Ly6C/Ly6G FITC RB6-8C5 BD
(Gr1)
NK1.1 FITC PK136 Ebioscience
TER-119 FITC TER-119 BD
TSLPR PE R&D
Streptavidin APC-eFluor780 Ebioscience
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Belgium). FlowJo software vX.07 (Tree Star, San Carlos,
USA) was used for data analysis.

16S sequencing

At sacrifice of all mice, fecal pellets from colon were sam-
pled, snap frozen in liquid nitrogen, and stored at — 80 °C.
These samples were used for 16S rRNA gene analysis for
microbiota profiling, as further described in Fransen et al.
2017 [40]. Microbial genus (L6) data were used through-
out this manuscript, unless otherwise indicated.

Basophil generation and stimulation in vitro

BM cells were thawed, checked for viability by trypan
blue, and counted. BM cells were cultured, using an op-
timized method that was adapted from a previously
published protocol [31]. About 3.3 x 10° viable BM cells
per mL culture medium were plated in 6-wells plates.
Culture medium consisted of RPMI-1640 medium
(Gibco, Breda, The Netherlands), 10% fetal calf serum
(Gibco), 100 pg/mL Normocin (Invivogen, San Diego,
USA), 2 ng/mL rmlIL-3 (Sanquin, Amsterdam, The
Netherlands), and 50 pM p-mercaptoethanol (Sigma-
Aldrich, Zwijndrecht, The Netherlands). Cells were cul-
tured for 10 days. Every 3—4 days, non-adherent cells
were collected, counted, and re-plated. About 10° cells
were used for flow cytometry to measure proliferation
and differentiation in the cultures (see Table 1 for anti-
bodies). Expansion of each culture was calculated by
dividing the cell count by the input. After 10 days, cells
were incubated with purified anti-CD16/32 and subse-
quently with biotinylated CD11c and CD117 (all BD
Biosciences, San Jose, USA). Cells were then incubated
with streptavidin-coated IMag beads (BD) and proc-
essed with the IMagnet (BD). The negative fraction was
incubated with biotinylated FceRla and subsequently
with streptavidin-coated IMag beads and processed
with the IMagnet. The positive fraction (containing
CD11c CD117 FceRIa* cells) were defined as BM-de-
rived basophils, and purity typically exceeded 95%
(average > 96%). Pure BMB were resuspended to 5 x
10°/mL and stimulated for 15 h with culture medium
(including IL-3) alone, 1 pg/mL rmTSLP (Ebioscience,
San Diego, USA), 5 pg/mL CD200R3 (BioLegend, San
Diego, USA), 10 pg/mL IgE (Abcam, Cambridge, USA)
or a combination of 50 ng/mL rmIL-18 (MBL Inter-
national, Watertown, USA) and 100 ng/mL rmlIL-33
(Sanquin). For intracellular cytokine staining, cells were
stimulated for 11 h, and Golgi-Stop (BD) was added for
an additional 4 h.

Statistical analysis
All statistical analyses were performed in Prism 5.0
(GraphPad Software, San Diego, USA). For comparing
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two experimental conditions, unpaired Student’s ¢ test
was applied (with Welch’s correction if unequal vari-
ances were observed). Mann-Whitney ¢ test was applied
if no normal distribution was found with D’Agostino &
Pearson omnibus normality test. Median fluorescence
intensities were tested by paired Students ¢ test or
Wilcoxon signed rank test (in absence of normal distri-
bution), because all experimental groups were equally
distributed at any day for acquisition. Correlations were
determined by Spearman’s rank correlation. If testing the
effect of two variables and their interaction (e.g. culture
time and age), two-way ANOVA (TWA) was applied,
with Bonferroni post hoc tests (normality verified by
Kolmogorov-Smirnov normality test). Values of p <0.05
were considered to be statistically significant, and
values between p>0.05 and p<0.10 were considered
to be a trend. Significant differences are indicated by
asterisks: * = p < 0.05; ** = p < 0.01; *** = p <0.001.
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