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Abstract

Background: Clonal hematopoiesis of indeterminate potential (CHIP), the age-related expansion of mutant
hematopoietic stem cells, confers risk for multiple diseases of aging including hematologic cancer and cardiovascular
disease. Whole-exome or genome sequencing can detect CHIP, but due to those assays’ high cost, most population
studies have been cross-sectional, sequencing only a single timepoint per individual.

Results: We developed and validated a cost-effective single molecule molecular inversion probe sequencing (smMIPS)
assay for detecting CHIP, targeting the 11 most frequently mutated genes in CHIP along with 4 recurrent mutational
hotspots. We sequenced 548 multi-timepoint samples collected from 182 participants in the Women’s Health Initiative
cohort, across a median span of 16 years. We detected 178 driver mutations reaching variant allele frequency≥ 2% in
at least one timepoint, many of which were detectable well below this threshold at earlier timepoints. The majority of
clonal mutations (52.1%) expanded over time (with a median doubling period of 7.43 years), with the others remaining
static or decreasing in size in the absence of any cytotoxic therapy.

Conclusions: Targeted smMIPS sequencing can sensitively measure clonal dynamics in CHIP. Mutations that reached
the conventional threshold for CHIP (2% frequency) tended to continue growing, indicating that after CHIP is acquired,
it is generally not lost. The ability to cost-effectively profile CHIP longitudinally will enable future studies to investigate
why some CHIP clones expand, and how their dynamics relate to health outcomes at a biobank scale.
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Background
Chronological age is the dominant risk factor for can-
cers and cardiovascular disease – the leading causes
of death worldwide [1]. Aging is also associated with
a higher prevalence of acquired somatic mutations,
especially in frequently regenerating cells, such as
hematopoietic stem cells (HSC). Clonal hematopoiesis
of indeterminate potential (CHIP) is the age-related
expansion (defined as variant allele fraction, VAF
≥2%) of cancer-associated somatic mutations (typically
in DNMT3A, TET2, ASXL1, JAK2) in hematopoietic
stem cells in the absence of unexplained cytopenia,
dysplasia, or neoplasia [2]. Recent whole exome se-
quence (WES) and whole genome sequence (WGS)
analyses of blood-derived DNA have shown that
CHIP is increasingly common with advancing age
(i.e., approximately 10% of asymptomatic adults older
than 70 years of age) [3–6]. While CHIP is a risk fac-
tor for hematologic malignancy and all-cause mortal-
ity [3, 7, 8], a number of analyses have shown an
association with atherosclerotic cardiovascular disease
[4, 9, 10]. CHIP is also associated with heightened
risk of therapy-related myeloid malignancies [11–14].
These studies underline the importance of CHIP as a
novel biomarker for early detection and monitoring of
multiple age-related diseases [15, 16]. However, fur-
ther longitudinal studies are needed for a better un-
derstanding of the root causes of CHIP, surveillance
strategies, and how CHIP dynamics influence the de-
velopment of chronic diseases.
Sensitivity for the detection of driver mutations is

highly dependent on sequencing depth. Both WGS
and WES are suitable for the detection of larger
clones (e.g., VAF > 5% in WGS [6, 7], and VAF > 3%
in WES [3, 4]). By comparison, deeper coverage,
error-corrected targeted sequencing techniques are
capable of detecting very small clones [8, 15], which
are nearly ubiquitous in healthy adults [17]. Add-
itional studies of apparently healthy adults character-
izing longitudinal changes in clone size over time
may reveal genetic and environmental factors promot-
ing clonal stability versus progression and yield new
insights into mechanisms underlying somatic muta-
genesis and aging as well as resultant disease patho-
genesis and disease prediction.
Here we present a single-molecule molecular inversion

probe sequencing (smMIPS) assay [18], that leverages a
cost-effective, ultrasensitive, high-throughput targeted
sequencing technique, for the detection of CHIP. We
apply this assay to a set of longitudinal peripheral blood
DNA samples obtained over a median range of 16 years
from 182 post-menopausal women from the Women’s
Health Initiative to compare to whole genome sequence
analysis and evaluate clonal dynamics.

Results
CHIP panel design and assay validation
We designed a smMIPS capture panel tiling all coding
exons (±5 bp) across the 11 most common CHIP genes,
along with mutational hotspots in four other genes (Fig. 1A
and Table 1). The final capture included 3526 probes, each
containing a 9-mer unique molecular index (UMI) for du-
plicate read removal, spanning a total of 35.2 kb of genomic
sequence in the target region. To validate this panel, we
first re-sequenced five HapMap lymphoblastoid cell lines
(LCLs) and successfully identified all variants defined by
1000G WGS datasets in the target region (n = 152), with no
additional variants called. Focusing on positions invariant
in these cell lines, we estimate a low sequencing error rate
of 0.045% (~ 1/2200 bp; Supplementary Note). Next, to
mimic driver mutations across a range of variant allele frac-
tions (VAF) starting well below the conventional CHIP
threshold of 2%, we mixed these cell lines’ genomic DNAs
at known proportions, and sequenced the mixture. We de-
tected all variants present in this mixture, at allelic fractions
tightly correlated with those expected given the cell lines’
mixing proportions (Pearson’s r = 0.998; Fig. 2). Based on
samples of known VAF sequenced in replicate, the
between-variant reliability of VAF estimated as an intraclass
correlation coefficient was 0.998 (95% confidence interval
0.998 to 0.999) (see Supplementary Note).

CHIP prevalence in WHI samples
We applied our new CHIP sequencing assay to samples
collected longitudinally from 182 subjects in the
Women’s Health Initiative (mean: 3.0, range: 1–6 sam-
ples per subject; summarized in Tables S1 and S2). We
obtained an overall median sequencing depth of 2803
(Table 1). After filtering, we detected a total of 206
CHIP driver mutations (defined as VAF ≥2%; Table S3).
In a subset of 97 individuals who previously underwent
both whole-genome sequencing (to ~30X depth) and
deep smMIPS targeted sequencing (>1000X depth) of
the same blood sample, 75/81 (92.3%) of the driver mu-
tations called by WGS (mean VAF = 13.2%) were also
detected by the smMIPS capture panel. The six muta-
tions found by WGS but missed by smMIPS were in
genes not included in the panel (n = 2), in a low coverage
target SRSF2 that was optimized in later captures (n = 2),
or were long deletions that disrupted probe binding (n =
2 instances of a 23-bp ASXL1 deletion). Despite the dif-
ference in sequencing depth between the two methods,
we observed a correlation of 0.79 between VAFs mea-
sured by WGS and smMIPS, among driver mutations
reaching VAF ≥ 2% by both methods (Fig. S1). Due to
the deeper sequencing coverage, smMIPS sequencing
detected an additional 103 driver mutations that went
undetected by WGS; as expected, these tended to be at
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lower VAFs (mean VAF = 2.6%) for which the read
depth provided by WGS (~ 30X coverage) is insufficient.

Characteristics of CHIP mutations detected by smMIPS
assay at initial WHI sampling
In the overall WHI sample (N = 182), at the initial time-
point sampled for each individual, 69/182 (38%) were
CHIP-positive (carrying at least one driver mutation at
VAF ≥2%), while 27/182 (15%) carried two or more such
mutations (Fig. 3A). At the baseline timepoint, the most
frequently mutated genes were DNMT3A (57% of driver
mutations at VAF ≥2%), TET2 (19%), and ASXL1 (6%),
consistent with prior WES or WGS reports [4, 6] (Fig.
3C). Among these were recurrent mutations at known
hotspots including DNMT3A R882H/R882C (n = 8 indi-
viduals) and JAK2 V617F (n = 10 individuals). In aggre-
gate, clone sizes estimated by VAF were not significantly
different by the gene mutated (Fig. 3D).
As expected, the prevalence of CHIP (defined as VAF

≥2%) at the initial blood sampling increased with age
(Fig. 3B), from 18% in individuals with initial samples

taken at age 60 years or younger, compared to 84%
among individuals with initial samples taken at 70 years
or older, with the high prevalence reflecting in part the
selection criteria for subjects previously known to be
CHIP-positive at baseline. In cross-sectional analyses, we
observed a significant association between baseline BMI
and age-adjusted CHIP VAF (p-value = 0.0446), but no
association with other available baseline participant
characteristics (race/ethnicity, smoking status) in this
sample (Table S4). The BMI association is consistent
with results from a WGS-based CHIP analysis showing
the association of CHIP with obesity in a larger WHI
sample [19].

CHIP dynamics in longitudinal samples
Of the 85 individuals with two or more blood draws for
which no driver mutation at VAF ≥ 2% was detected in
the initial sample, 49 (58%) developed at least one such
driver mutation at the final sampling point an average of
13.9 years later. While these late-arising clones tended to
remain small (only 11/49 reached VAF ≥ 10%), many

Fig. 1 Study design and CHIP sequencing strategy. A Schematic of smMIPS assay design. B Somatic mutation identified as CHIP by smMIPS assay.
C Schematic of study design, with sequencing of each subject (n = 182) using samples collected at up to six timepoints including a baseline visit,
a series of annual visits (AV), and a final visit (LLS, Long Life Study)
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were detectable above background at earlier time points
even though they did not meet the working definition of
CHIP. We classified the trajectories of each driver muta-
tion, focusing on individuals (n = 65) for which there
were three or more timepoints, with a VAF ≥ 1% clone
in at least one of them. In these individuals, we identi-
fied 146 ‘trackable’ mutations, with 76 on growing tra-
jectories, 30 shrinking, and 40 remaining static (Fig. 4).
Among the mutations with a growing trajectory, the me-
dian rate of growth was 7.43 years (interquartile range:
4.48, 10.9 years) per doubling.
Once mutations reached appreciable frequency, they

tended to continue growing, indicating that after CHIP
is acquired, it is generally not lost. Among the 76 grow-
ing trajectories, 34 (44.7%) reached the CHIP threshold
of VAF ≥ 2% and 16 of these (21.1%) reached a VAF of
≥5%. By contrast, among the shrinking or static trajec-
tories, only 10 and 2 mutations reached these respective
VAF thresholds at any single timepoint. Of the 10 non-
growing clones that reached VAF ≥ 2% at any timepoint,
half involved another, growing trajectory detected in the
same individual, and likely reflect competition from sep-
arate, fitter clones (Fig. 5).

Growth rate varies by driver gene
We next examined driver mutation growth rate by CHIP
gene and participant characteristics, as driver mutations
in different CHIP genes may confer differential fitness
advantages [20–23]. To examine this, we selected the
dominant (largest VAF) trajectory from each individual,
removing individuals whose dominant clone trajectories

Table 1 Genes targeted on smMIPs assay and proportion of
CHIP in population covered by these target regions

Gene
name

Target
size (bp)

MIPS read depth % of CHIP
in
Populationb

Median Mean

ASXL1 4687 2054 3891 7.41%

CBL 2803 4880 6845 0.62%

DNMT3A 3071 3163 4325 45.97%

GNB1 1023 4671 6139 0.97%

PPM1D 1894 3889 4856 4.01%

SF3B1 4045 3936 5073 2.46%

TET2 6165 2033 3587 19.13%

TP53 1714 4063 5543 1.97%

U2AF1 880 4403 6126 0.23%

ZBTB33 2019 1983 2632 2.22%

ZNF318 6918 3240 4765 1.80%

SRSF2a 1 289 512 1.88%

IDH1a 1 1325 1797 0.09%

IDH2a 1 3029 3909 0.30%

JAK2a 1 3839 4944 1.65%

Overall 35,223 bp 2803 4480 88.83%
aSRSF2, IDH1, IDH2, JAK2 target a single hotspot mutation
bPopulation frequencies of CHIP previously reported in NHLBI TOPMed
cohorts [6]

Fig. 2 Validation by sequencing defined sample mixtures. Observed (mean +/− s.e. across 27 replicates) vs expected variant allele frequency
(VAF) for repeated smMIPS sequencing of a defined control mixture of gDNAs from five cell lines, across 152 polymorphic sites. Overall Pearson’s
correlation r = 0.998, and r = 0.847 and r = 0.997 for variants with expected VAF ≤2 and > 2%, respectively
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are shrinking or static, leading to 43 independent trajec-
tories from 8 CH driver genes (Table 2). Due to the
small number of clones for all but the 3 major CHIP
driver genes (DNMT3A, TET2, ASXL1; n = 35 trajector-
ies), we grouped trajectories for the other genes into a

single “Other” category (n = 8). The rate of growth was
higher among the “other” group, which included CBL,
JAK2, TP53, and U2AF1, compared to the three major
CHIP genes (P = 0.0013, Mann-Whitney U test). In
addition, DNMT3A mutant clones were less likely to be

Fig. 3 CHIP at initial blood draw. A Number of CHIP clones (driver mutations with VAF≥ 2%) identified per subject at initial draw. B Prevalence of CHIP at
VAF ≥2% (blue) or≥ 10% (orange) by age at initial draw. C Number of mutations (VAF≥ 2%) per gene. D Driver mutation VAFs grouped by gene

Fig. 4 Longitudinal measurement of CHIP dynamics. Trajectories are shown, grouped by direction (rows) and gene (columns). Each trajectory
corresponds to a single driver mutation in one subject, shaded by gene; black horizontal represents the VAF = 2% threshold
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in growing trajectories compared with other driver
genes (OR = 0.52, P = 0.0085). Similar trends held
among participants with only two timepoints, in
which CHIP clones were classified as growing or non-
growing. No association was observed between age-
adjusted change in VAF (after log10 transformation)
of dominant clones and any baseline participant char-
acteristics (race/ethnicity, smoking status and BMI) in
this sample (Table S5).

Discussion
Here we describe a rapid and cost-effective smMIPS-
based assay that enables detection of CHIP in large scale
longitudinal populations. Applying this assay to multi-
time point samples from WHI participants demonstrates
robust real-world performance in a large collection of lon-
gitudinal samples and reveals novel insights on clonal dy-
namics in a population without hematologic malignancy.
Most studies of CHIP to date rely upon either WGS or

WES, or commercial capture kits which have high sequen-
cing or library preparation costs, respectively, ranging
from $150–$1000 per sample. The smMIPS approach of-
fers a sensitive alternative at much lower per-sample cost

($30 per sample). Previous work using smMIPS for CHIP
detection has been focused on individual hotspots [24]
with full gene tiling of only DNMT3A [22]. Our results
demonstrate that smMIPS can scale to fully tile gene sets
which cumulatively account for nearly 90% of CHIP as de-
termined by WGS.
Our application of the smMIPS assay to WHI reveals sev-

eral important insights. We observe a significant burden of
driver mutations below the conventional CHIP definition
(VAF ≥ 2%) [4], enabled by deep sequencing coverage this
assay provides. Indeed, for 97 individuals sequenced by
both smMIPS and WGS, smMIPS detected 75 of the 81
driver mutations found by WGS, and an even greater num-
ber (n = 103) of driver mutations missed by WGS. Al-
though these smMIPS-only clones tended to be less
abundant, as expected, a subset nevertheless exceeded the
working VAF ≥ 2% definition of CHIP. While these lower-
VAF driver mutations may be less likely to have a clinical
impact, in another WHI study, somatic mutations with any
detectable VAF > 1% were associated with increased risk of
acute myeloid leukemia [8]. Likewise, driver mutations in
DNMT3A and TET2 at frequencies as low as 1% have been
associated with poor prognosis in chronic ischemic heart

Fig. 5 Competition among multiple different driver mutations in individual subjects. Each panel represents a single subject, and each driver
mutation is a single line shaded by trajectory (red: growing, gray: static, black: shrinking)

Table 2 Number of trajectories for each driver gene

Gene DNMT3A TET2 ASXL1 CBL JAK2 PPM1D TP53 U2AF1 Total

Growing, dominant 23 9 3 2 2 2 1 1 43

Growing, non-dominant 20 6 3 0 0 1 2 0 33

Shrinking 20 5 2 2 0 0 1 0 30

Static 30 7 2 0 0 0 1 0 40
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failure [25]. Thus, the clinical implications of these small
clones (VAF range 0.1–2%) remain to be determined in fu-
ture work, enabled through cost-efficient sequencing via as-
says like the one described here.
Our results add to recent observations regarding the

longitudinal dynamics of clonal hematopoiesis suggesting
driver gene-specific differences in clonal fitness. We find
that CHIP clones detected among individuals without can-
cer do not inexorably grow: just over half of those ob-
served did expand, with the remaining, mostly low-
frequency clones divided roughly evenly between static
and shrinking trajectories. Once mutations reached appre-
ciable frequency, they tended to continue growing. Our
results showing that DNMT3A mutant clones are less
likely to be in growing trajectories are consistent with
those of Fabre et al. [21] who found that clonal growth
rate varies according to both age and driver gene muta-
tion, with DNMT3A having a comparatively slow clonal
growth rate in older aged adults. Similarly, using longitu-
dinal targeted error-corrected sequence analysis in the Lo-
thian Birth Cohorts, Robertson et al. [23] showed that
clonal growth and fitness can differ substantially by gene,
with splicing genes (such as SF3B1) having higher growth
rates and clonal fitness compared to mutations in com-
mon genes such as DNMT3A, TET2 or ASXL1.
In a longitudinal study of ultra-sensitive smMIP-based

targeted gene sequencing of obese individuals, Van Deu-
ren et al. [22] reported that metabolic factors such as insu-
lin resistance and high density lipoprotein cholesterol may
accelerate expansion of CHIP clones. While we did not
detect any association of other baseline participant charac-
teristics such as race/ethnicity, BMI, or smoking on clonal
growth, larger sample sizes with serial sampling will be re-
quired to identify the genetic and environmental factors
contributing to the differing outcomes of clonal competi-
tion and growth. This area of investigation has important
clinical implications because mutations driving faster
clonal growth, as reflected by a more rapid rise in VAF,
carry a higher risk of malignant progression [21] and
shorter time to development of AML [8].
Our study has several limitations. First, our assay ro-

bustly targets genes which account for ~ 90% of CHIP
present in the population, so we may be misclassifying
~ 10% of CHIP-positive individuals due to omission of
minor CHIP genes from the sequencing panel. This tra-
deoff was required to make the platform highly cost ef-
fective. However, a key benefit of the assay is that it is
simple to extend to cover new targets, or to optimize
coverage at existing ones, by spiking in new probes. In
the present study, we leveraged this capability to add
additional probes targeting a highly G + C-rich muta-
tional hotspot in SRSF2, which increased its mean cover-
age from < 1 to 508. A second limitation of our study is
that the availability of multi-time point samples was not

uniform due to differences in the WHI study protocol.
Third, there are other kinds of clonal hematopoiesis,
such as mosaic chromosomal abnormalities (e.g. struc-
tural variants) that are not detected with our CHIP
assay. These limitations are balanced by the significant
strengths of the novel CHIP detection assay applied to
one of the largest sample sizes studied to date.

Conclusions
Our development of a novel smMIPS assay for CHIP de-
tection enables scalable and cost-effective identification
of CHIP in longitudinal multi-timepoint samples from
WHI. This data enabled new observations on the
spectrum of clonal hematopoiesis and clonal dynamics.
Future investigations using this assay at scale may enable
understanding of causes of these clonal dynamic phe-
nomena and how changes in CHIP dynamics relate to
diseases of aging associated with clonal hematopoiesis.

Methods
Samples
The Women’s Health Initiative (WHI) is a multicenter
prospective study of risk factors for CVD, cancer, osteo-
porotic fractures, and other causes of morbidity and
mortality among postmenopausal women [26]. Between
1993 and 1998, women aged 50–79 years from forty
WHI clinical centers throughout the United States (US)
were enrolled. All WHI participants completed a base-
line screening visit at the time of enrollment which in-
cluded blood sample collection. WHI participants have
been followed prospectively for over 25 years. A subset
of participants had blood collected at annual visits (AV)
occurring at one, three, six, and 9 years after enrollment
(AV1, AV3, AV6, AV9). An additional visit occurred be-
tween 2012 and 2013 (mean 15.4 years; range from 14 to
19 years after enrollment) as part of the WHI Long Life
Study (LLS), which recruited a subset of 7875 surviving
women ranging in age from 63 to 99 years at the time of
LLS recruitment [27]. At each visit (baseline, AV1, AV3,
AV6, AV9, LLS) genomic DNA was extracted from per-
ipheral blood leukocytes using the 5 Prime DNA extrac-
tion kit.
A total of 182 WHI participants (without known

prevalent hematological malignancy) were included in
the current smMIPS-based sequencing study. These 182
individuals were selected either on the basis of either (a)
having previously undergone WGS-based or targeted se-
quencing -based CHIP determination through the
NHLBI TOPMed project (sample set A; N = 100) or hav-
ing DNA samples at 3 or more time points (sample set
B; N = 86). Sample set A was used to compare the detec-
tion of driver mutations between WGS and our new
smMIPS capture panel. Therefore, we intentionally over-
sampled WHI TOPMed participants who were
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previously determined to have CHIP (driver mutations
at VAF ≥ 2% based on WGS or targeted sequencing) in
order to directly compare intra-subject CHIP detection
and VAF as determined by different assays using the
same blood sample at the same time point. Sample set B
was primarily to maximize our ability to assess longitu-
dinal CHIP trajectories over time, and therefore includes
mainly individuals who had DNA samples available at 4,
5 or 6 different time points. A detailed breakdown of
number of samples at each time point (baseline, AV1,
AV3, AV6, AV9, LLS) is provided in Table S1. Median
age of participants was 62 years at baseline (range: 50–
78 years) and 81 years (range: 66–95 years) at the LLS
visit, respectively.

Single molecule molecular inversion probe sequencing
(smMIPS) assay
A smMIPS capture panel was designed to tile coding
exons (+/− 5 bp) of the 11 most common CHIP genes [9]
and recurrent mutational hotspots in four others (Table
1). Probe sequences were selected as previously described
[28], with adjustments to eliminate the need for custom
sequencing primers. Briefly, probe libraries were synthe-
sized as a 12 k oligo pool by CustomArray (Bothell, WA)
Inc., and subjected to bulk PCR amplification using flank-
ing primers jklab0255_2019mipsPrep1f (GAGATCGGCG
CGTTAGAAGAC) and jklab0256_2019mipsPrep1r
(TGCAGGATCTAGGGCGAAGAC). PCR product was
cleaned with 2.5X SPRI beads and eluted in 1X NEB cut
smart buffer. To generate capture-ready probe pools,
flanking adaptors were removed by BbsI-HF (#R3539L,
NEB; Ipswitch, MA) digestion, overnight at 37 °C.
Digested probes were cleaned by incubating with 1x vol-
ume SPRI beads (supplemented with 5 volumes isopropa-
nol for 20minutes), followed by washes in 70% ethanol
and elution in Tris-EDTA pH 8. Poorly captured regions
were tiled with additional probes (N = 112), synthesized as
an oPool library by Integrated DNA Technologies (Coral-
ville, IA) lacking flanking amplification adaptors and with
5′ phosphates. Original and make-up probes were com-
bined into a single pool before use.
Capture reactions were assembled in a 96-well format,

in 20 ul volume containing: probes (150:1M excess to
genomic DNA targets), 1X Ampligase buffer, 1 U Ampli-
gase (Lucigen; Madison, WI), dNTPs at 0.4 uM each and
0.32 ul Hemo KlenTaq polymerase (NEB). Plates were
incubated in a thermocycler at 95 °C for 10 minutes,
95 °C→ 60 °C at − 0.1 °C/sec, followed by a hold at 60 °C
for 18–24 hours. Exonuclease treatment was continued
immediately after capture by adding 2 ul of mix contain-
ing 1X Ampligase buffer, 5 U Exonuclease I (NEB), and
25 U Exonuclease III (NEB) to each sample. Reactions
were incubated at 37 °C for 45 minutes and 95 °C for 2
minutes. Dual indexed sequencing libraries were

constructed by PCR amplification using indexing
primers directed against common sequences on the
probe backbone. Libraries were pooled at equal volumes,
purified by 0.9X SPRI beads, and sequenced in batches
of 196 on Hiseq 4000 or Novaseq instruments with
paired-end 150-bp reads. Reagent, consumable, and se-
quencing costs total approximately $30 USD/sample.
Sequencing reads were aligned to the human reference

genome (build 37) with bwa mem [29], and a custom se-
quencing pipeline (https://github.com/kitzmanlab/
mimips) was used for post-alignment processing to re-
move probe arm sequences from each alignment and fil-
ter reads with duplicate unique molecular identifiers
(UMIs).

smMIPS assay validation and reliability
To validate the clone size detection limit of the smMIPS
method, we prepared mixtures of gDNAs from five lym-
phoblastoid cell lines (GM06994, GM12878, GM20847,
GM12877 and GM18507) with known genotypes, com-
bined at 78.8, 16, 4, 1, 0.25%. Within the target region,
these cell lines have 152 known variants as defined by
the 1000 Genome Project (1000G) WGS genotypes and
by detecting germline variants by sequencing cell lines
individually. In the resulting mixture, their expected
VAFs range from 0.125 to 100%. These variants consti-
tuted the true positive variant set. We also defined as
‘true negative’ sites 13 common polymorphism SNVs ab-
sent from all of the five cell lines, and those sites (+/−
50 bp) were defined as true negative variants. The posi-
tive control mixture was included with each sequencing
batch for a total of 27 replicates. The between-variant
reliability of VAF estimated as an intraclass correlation
coefficient was 0.998 (95% confidence interval 0.998 to
0.999) (see Supplementary Note).

Variant calling
Somatic SNPs and indels were called using LoFreq
2.1.3.1 [30], requiring minimum coverage 40, with ≥5
reads supporting the alternate allele and a variant allele
frequency (VAF) ≥ 0.1%. Variants present in ≥5% of sam-
ples at a VAF of 1–10% were discarded as likely recur-
rent artifacts.

CHIP calling
Variants were annotated using ANNOVAR software
[31]. Variant calls processed using an existing filtering
pipeline based upon gene name, variant functional class,
and populational allele frequency [6]; workflow is avail-
able at available at https://app.terra.bio/#workspaces/
terra-outreach/CHIP-Detection-Mutect2/notebooks. For
ZBTB33 and ZNF318, two genes not listed in [6], we in-
cluded variants annotated as frameshift/splice-site/non-
sense or nonsynonymous [32]. The full list of specific
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mutations queried is presented in Table S5. We manu-
ally reviewed alignments for selected CHIP variant calls
using Integrative Genomics Viewer (IGV) [33].

CHIP clone trajectories
To characterize the longitudinal trajectory of each CHIP
clone over time, we restricted our analysis to individuals
who (a) underwent smMIPS sequencing at least 3 time
points and (b) had at least one driver mutation detect-
able at VAF > 1% at any of the timepoints. We excluded
any variants with alternate read count < 2 or total read
depth < 200. For each driver mutation meeting these cri-
teria, we modeled the trajectory by fitting a linear regres-
sion: log10(VAF) = C + β * age; VAFs of zero were set to
a minimum of 10− 4 (reflecting a conservative limit of de-
tection for smMIPS), and each observation was weighted
by the square root of the read depth. To further
characterize clonal dynamics, we classified each trajec-
tory based on linear trajectory, as (a) growing (β > 0, P <
0.5), (b) shrinking (β ≤ 0, P < 0.5), or (c) static (P ≥ 0.5).
For trajectory analysis, we excluded CHIP clones with
starting VAF > 10%, for which an exponential growth as-
sumption may not fit.

Association between participant characteristics and CHIP
VAF and growth rate
For cross-sectional analyses at a single time point,
we fit linear and logistic regression models to assess
the relationship of either CHIP prevalence (total
clones or large clones only) or log-transformed VAF
to age at blood draw, race/ethnicity, smoking status,
or BMI. We used the first visit time point for each
subject. To assess the relationship of these same par-
ticipant characteristics, to clone growth over time,
we utilized longitudinal data from all individuals
with sequencing data from at least two time points
with positive VAF observations (N = 148 individuals).
For each participant, we first selected a single driver
clone, prioritizing as the predominant clone those
with the highest VAF at any follow-up timepoint.
We used a linear regression to determine the effect
of age, race/ethnicity, smoking, or BMI on the differ-
ence (after log10 transformation) between the first
non-zero VAF value and the last non-zero VAF. All
statistical analyses were adjusted for the first visit
time of year and performed in R version 4.2 (R Core
Team, URL https://www.R-project.org/).
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