Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal. 2009;11:2717–39.
Article
CAS
PubMed
Google Scholar
Calabrese V, Guagliano E, Sapienza M, Panebianco M, Calafato S, Puleo E, et al. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res. 2007;32:757–73.
Article
CAS
PubMed
Google Scholar
Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 2011;76:91–9.
Article
CAS
PubMed
Google Scholar
Calabrese V, Cornelius C, Mancuso C, Lentile R, Stella AM, Butterfield DA. Redox homeostasis and cellular stress response in aging and neurodegeneration. Methods Mol Biol. 2010;610:285–308.
Article
CAS
PubMed
Google Scholar
Giffard RG, Macario AJ, de Macario EC. The future of molecular chaperones and beyond. J Clin Invest. 2013;123(8):3206–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci. 2014;69 Suppl 1:S33–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Calabrese V, Cornelius C, Mancuso C, Barone E, Calafato S, Bates T, et al. Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front Biosci. 2009;14:376–97.
Article
CAS
Google Scholar
Calamini B, Silva MC, Madoux F, Hutt DM, Khanna S, Chalfant MA, et al. Small-molecule proteostasis regulators for protein conformational diseases. Nat Chem Bio. 2011;8(2):185–96.
Article
CAS
Google Scholar
Kansanen E, Bonacci G, Schopfer FJ, Kuosmanen SM, Tong KI, Leinonen H, et al. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem. 2011;286(16):14019–27.
Article
PubMed Central
CAS
PubMed
Google Scholar
Raynes R, Brunquell J, Westerheide SD. Stress Inducibility of SIRT1 and Its Role in Cytoprotection and Cancer. Genes Cancer. 2013;4(3–4):172–82.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ryno LM, Genereux JC, Naito T, Morimoto RI, Powers ET, Shoulders MD, et al. Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1. ACS Chem Biol. 2014;9(6):1273–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kikis EA, Gidalevitz T, Morimoto RI. Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol. 2010;694:138–59.
Article
PubMed Central
CAS
PubMed
Google Scholar
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal. 2014;8(4):293–310.
Article
PubMed Central
PubMed
Google Scholar
Van Oosten-Hawle P, Morimoto RI. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling. Genes Dev. 2014;28(14):1533–43.
Article
PubMed Central
PubMed
CAS
Google Scholar
Batulan Z, Taylor DM, Aarons RJ, Minotti S, Doroudchi MM, Nalbantoglu J, et al. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol Dis. 2006;24(2):213–25.
Article
CAS
PubMed
Google Scholar
Calderwood SK. HSF1, a versatile factor in tumorogenesis. Curr Mol Med. 2012;12(9):1102–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Calderwood SK, Murshid A, Prince T. The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review. Gerontology. 2009;55:550–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gidalevitz T, Prahlad V, Morimoto RI. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb Perspect Biol. 2011;3(6). doi:10.1101/cshperspect.a009704.
Westerheide SD, Raynes R, Powell C, Xue B, Uversky VN. HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci. 2012;13(1):86–103.
Article
CAS
PubMed
Google Scholar
Broadley SA, Hartl FU. The role of molecular chaperones in human misfolding diseases. FEBS Lett. 2009;583(16):2647–53.
Article
CAS
PubMed
Google Scholar
Labbadia J, Morimoto RI. Proteostasis and longevity: when does aging really begin? F1000Prime Rep. 2014;6:7.
Article
PubMed Central
PubMed
Google Scholar
Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, et al. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res. 2008;33(12):2444–71.
Article
CAS
PubMed
Google Scholar
Calabrese V, Calafato S, Cornelius C, Mancuso C, and Dinkova-Kostova. A Heme oxygenase: A master vitagene involved in cellular stress response. In: AM Eleuteri, editor. Enzymes and the Cellular Fight Against Oxidation. Research Signpost 2008, 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India.
Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal. 2010;13(11):1763–811.
Article
PubMed Central
CAS
PubMed
Google Scholar
Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, et al. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta. 2012;1822(5):753–83.
Article
CAS
PubMed
Google Scholar
Calabrese V, Butterfield DA, Stella AM. Aging and oxidative stress response in the CNS. In: Lajtha A, Perez-Polo JR, Rossner S, editors. Development and Aging Changes in the Nervous System. Handbook of Neurochemistry and Molecular Neurobiology. 3rd ed. 2008. p. 128–234.
Google Scholar
Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ. Vitagenes, cellular stress response and acetylcarnitine: relevance to hormesis. Biofactors. 2009;35:146–60.
Article
CAS
PubMed
Google Scholar
Mancuso C, Pani G, Calabrese V. Bilirubin: An endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep. 2006;11:207–13.
Article
CAS
PubMed
Google Scholar
Mancuso C, Barone E, Guido P, Miceli F, Di Domenico F, Perluigi M, et al. Inhibition of lipid peroxidation and protein oxidation by endogenous and exogenous antioxidants in rat brain microsomes in vitro. Neurosci Lett. 2012;518(2):101–5.
Article
CAS
PubMed
Google Scholar
Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med. 2009;11:28–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu DJ, Hammer D, Komlos D, Chen KY, Firestein BL, Liu AY. SIRT1 knockdown promotes neural differentiation and attenuates the heat shock response. J Cell Physiol. 2014;229(9):1224–35.
Article
CAS
PubMed
Google Scholar
Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008;22:1427–38.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morimoto RI, Santoro MG. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol. 1998;16:833–8.
Article
CAS
PubMed
Google Scholar
Trovato Salinaro A, Cornelius C, Koverech G, Koverech A, Scuto M, Lodato F, et al. Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to Alzheimer’s disease. Front Pharmacol. 2014;5:129.
Article
PubMed Central
PubMed
CAS
Google Scholar
Haslbeck M, Vierling E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol. 2015;427(7):1537–48.
Article
CAS
PubMed
Google Scholar
Clerico EM, Tilitsky JM, Meng W, Gierasch LM. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol. 2015;427(7):1575–88.
Article
CAS
PubMed
Google Scholar
Macario AJ, Conway de Macario E. Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci. 2007;12:2588–600.
Article
CAS
PubMed
Google Scholar
Gyurko DM, Soti C, Stetak A, Csermely P. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks. Curr Protein Pept Sci. 2014;15(3):171–88.
Article
CAS
PubMed
Google Scholar
Mattoo RU, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol Life Sci. 2014;71(17):3311–25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Clare DK, Saibil HR. ATP-driven molecular chaperone machines. Biopolymers. 2013;99(11):846–59.
Article
PubMed Central
CAS
PubMed
Google Scholar
Macario AJ, Conway de Macario E. Chaperonopathies by Defect, Excess, or Mistake. Ann NY Acad Sci. 2007;1113:178–91.
Article
CAS
PubMed
Google Scholar
Cortez L, Sim V. The therapeutic potential of chemical chaperones in protein folding diseases. Prion. 2014;8(2). Epub 2014 May 12.
Hipkiss AR. Error-protein metabolism and ageing. Biogerontology. 2009;10(4):523–9.
Article
CAS
PubMed
Google Scholar
Akude E, Zherebitskaya E, Chowdhury SK, Smith DR, Dobrowsky RT, Fernyhough P. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes. 2011;60:288–97.
Article
PubMed Central
CAS
PubMed
Google Scholar
Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci. 2005;6:11–22.
Article
CAS
PubMed
Google Scholar
Baseler WA, Dabkowski ER, Williamson CL, Croston TL, Thapa D, Powell MJ, et al. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol. 2011;300:R186–200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chowdhury SK, Dobrowsky RT, Fernyhough P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes. Mitochondrion. 2011;11:845–54.
Article
CAS
PubMed
Google Scholar
Saibil HR. Biochemistry. Machinery to reverse irreversible aggregates. Science. 2013;339(6123):1040–1.
Article
CAS
PubMed
Google Scholar
Priya S, Sharma SK, Goloubinoff P. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett. 2013;587(13):1981–7.
Article
CAS
PubMed
Google Scholar
Bersuker K, Hipp MS, Calamini B, Morimoto RI, Kopito RR. Heat shock response activation exacerbates inclusion body formation in a cellular model of Huntington disease. J Biol Chem. 2013;288(33):23633–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang K, Zhao T, Huang X, Liu ZH, Xiong L, Li MM, et al. Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain. Cell Stress Chaperones. 2009;14:407–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delgado M, Varela N, Gonzalez-Rey E. Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia. 2008;56:1091–103.
Article
PubMed
Google Scholar
Kakimura J, Kitamura Y, Takata K, Umeki M, Suzuki S, Shibagaki K, et al. Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J. 2002;16:601–3.
CAS
PubMed
Google Scholar
Siciliano R, Barone E, Calabrese V, Rispoli V, Butterfield DA, Mancuso C. Experimental research on nitric oxide and the therapy of Alzheimer disease: a challenging bridge. CNS Neurol Disord Drug Targets. 2011;10(7):766–76.
Article
CAS
PubMed
Google Scholar
Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E. Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspects Med. 2011;32(4–6):258–66.
Article
CAS
PubMed
Google Scholar
Brown IR. Heat shock proteins and protection of the nervous system. Ann NY Acad Sci. 2007;1113:147–58.
Article
CAS
PubMed
Google Scholar
Söti C, Csermely P. Protein stress and stress proteins: implications in aging and disease. J Biosci. 2007;32:511–5.
Article
PubMed
Google Scholar
Kim HL, Cassone M, Otvos Jr L, Vogiatzi P. HIF-1alpha and STAT3 client proteins interacting with the cancer chaperone Hsp90: therapeutic considerations. Cancer Biol Ther. 2008;7:10–4.
Article
CAS
PubMed
Google Scholar
Muller P, Hrstka R, Coomber D, Lane DP, Vojtesek B. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene. 2008;27:3371–83.
Article
CAS
PubMed
Google Scholar
Okayama S, Kopelovich L, Balmus G, Weiss RS, Herbert BS, Dannenberg AJ, et al. p53 protein regulates Hsp90 ATPase activity and thereby Wnt signalling by modulating Aha1 expression. J Biol Chem. 2014;289(10):6513–25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mancuso C, Barone E. The heme oxygenase/biliverdin reductase pathway in drug research and development. Curr Drug Metab. 2009;10(6):579–94.
Article
CAS
PubMed
Google Scholar
Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–54.
Article
CAS
PubMed
Google Scholar
Maines MD. Heme Oxygenase in Clinical Applications and Functions. Boca Raton: CRC Press; 1992.
Google Scholar
McCoubrey Jr WK, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem. 1997;247(2):725–32.
Article
CAS
PubMed
Google Scholar
Maines MD, Panahian N. The heme oxygenase system and cellular defense mechanisms. Do HO-1 and HO-2 have different functions? Adv Exp Med Biol. 2001;502:249–72.
Article
CAS
PubMed
Google Scholar
Ryter SW, Choi AM. Carbon monoxide: present and future indications for a medical gas. Korean J Intern Med. 2013;28(2):123–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mancuso C, Navarra P, Preziosi P. Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic-pituitary-adrenal axis. J Neurochem. 2010;113(3):563–75.
Article
CAS
PubMed
Google Scholar
Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005;57(4):585–630.
Article
CAS
PubMed
Google Scholar
Mancuso C, Preziosi P, Grossman AB, Navarra P. The role of carbon monoxide in the regulation of neuroendocrine function. Neuroimmunomodulation. 1997;4(5–6):225–9.
CAS
PubMed
Google Scholar
Mancuso C, Scapagnini G, Currò D, Giuffrida Stella AM, De Marco C, Butterfield DA, et al. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci. 2007;12:1107–23.
Article
CAS
PubMed
Google Scholar
Mancuso C, Capone C, Ranieri SC, Fusco S, Calabrese V, Eboli ML, et al. Bilirubin as an endogenous modulator of neurotrophin redox signaling. J Neurosci Res. 2008;86(10):2235–49.
Article
CAS
PubMed
Google Scholar
Barone E, Trombino S, Cassano R, Sgambato A, De Paola B, Di Stasio E, et al. Characterization of the S-denitrosylating activity of bilirubin. J Cell Mol Med. 2009;13(8B):2365–75.
Article
PubMed
Google Scholar
Stocker R. Antioxidant activities of bile pigments. Antioxid Redox Signal. 2004;6(5):841–9.
Article
CAS
PubMed
Google Scholar
Minetti M, Mallozzi C, Di Stasi AM, Pietraforte D. Bilirubin is an effective antioxidant of peroxynitrite-mediated protein oxidation in human blood plasma. Arch Biochem Biophys. 1998;352(2):165–74.
Article
CAS
PubMed
Google Scholar
Barone E, Di Domenico F, Cenini G, Sultana R, Coccia R, Preziosi P, et al. Oxidative and nitrosative modifications of biliverdin reductase-A in the brain of subjects with Alzheimer’s disease and amnestic mild cognitive impairment. J Alzheimers Dis. 2011;25(4):623–33.
CAS
PubMed
Google Scholar
Barone E, Di Domenico F, Sultana R, Coccia R, Mancuso C, Perluigi M, et al. Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med. 2012;52(11–12):2292–301.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barone E, Cenini G, Di Domenico F, Martin S, Sultana R, Mancuso C, et al. Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res. 2011;63(3):172–80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Butterfield DA, Barone E, Di Domenico F, Cenini G, Sultana R, Murphy MP, et al. Atorvastatin treatment in a dog preclinical model of Alzheimer’s disease leads to up-regulation of heme oxygenase-1 and is associated with reduced oxidative stress in brain. Int J Neuropsychopharmacol. 2012;15(7):981–7.
Article
CAS
PubMed
Google Scholar
Barone E, Mancuso C, Di Domenico F, Sultana R, Murphy MP, Head E, et al. Biliverdin reductase-A: a novel drug target for atorvastatin in a dog pre-clinical model of Alzheimer disease. J Neurochem. 2012;120(1):135–46.
Article
CAS
PubMed
Google Scholar
Barone E, Di Domenico F, Mancuso C, Butterfield DA. The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it’s time for reconciliation. Neurobiol Dis. 2014;62:144–59.
Article
CAS
PubMed
Google Scholar
Butterfield DA, Barone E, Mancuso C. Cholesterol-independent neuroprotective and neurotoxic activities of statins: perspectives for statin use in Alzheimer disease and other age-related neurodegenerative disorders. Pharmacol Res. 2011;64(3):180–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abete P, Testa G, Cacciatore F, Della-Morte D, Galizia G, Langellotto A, et al. Ischemic preconditioning in the younger and aged heart. Aging Dis. 2011;2(2):138–48.
PubMed Central
PubMed
Google Scholar
Schulz H. Uber Hefegifte. Pfluger’s Archiv Gesemmte Physiol. 1888;42:517–41.
Article
Google Scholar
Calabrese EJ. Hormetic mechanisms. Crit Rev Toxicol. 2013;43(7):580–606.
Article
CAS
PubMed
Google Scholar
Mitchel RE, Hasu M, Bugden M, Wyatt H, Hildebrandt G, Chen YX, et al. Low-dose radiation exposure and protection against atherosclerosis in ApoE(−/−) mice: the influence of P53 heterozygosity. Radiat Res. 2013;179(2):190–9.
Article
CAS
PubMed
Google Scholar
Blyth BJ, Azzam EI, Howell RW, Ormsby RJ, Staudacher AH, Sykes PJ. An adoptive transfer method to detect low-dose radiation-induced bystander effects in vivo. Radiat Res. 2010;173(2):125–37.
Article
CAS
PubMed
Google Scholar
Phan N, Boreham DR. Health effects from low dose occupational and medical radiation exposure and the role of adaptive response. Health Phys. 2011;100(3):286–7.
Article
CAS
PubMed
Google Scholar
Mothersill C, Seymour C. Implications for human and environmental health of low doses of ionising radiation. J Environ Radioact. 2014;133:5–9.
Article
CAS
PubMed
Google Scholar
Nomura T, Sakai K, Ogata H, Magae J. Prolongation of life span in the accelerated aging klotho mouse model, by low-dose-rate continuous γ irradiation. Radiat Res. 2013;179(6):717–24.
Article
CAS
PubMed
Google Scholar
Scott BR. Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy. J Cell Commun Signal. 2014;8(4):341–52.
Article
PubMed Central
PubMed
Google Scholar
Elmore E, Lao XY, Kapadia R, Swete M, Redpath JL. Neoplastic transformation in vitro by mixed beams of high-energy iron ions and protons. Radiat Res. 2011;176(3):291–302.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Origin of the linearity no threshold (LNT) dose–response concept. Arch Toxicol. 2013;87(9):1621–33.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Low doses of radiation can enhance insect lifespans. Biogerontology. 2013;14(4):365–81.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Hormesis and homeopathy: introduction. Hum Exp Toxicol. 2010;29(7):527–9.
Article
PubMed
Google Scholar
Calabrese EJ, Calabrese V. Low dose radiation therapy (LD-RT) is effective in the treatment of arthritis: animal model findings. Int J Radiat Biol. 2013;89(4):287–94.
Article
CAS
PubMed
Google Scholar
Calabrese EJ, Iavicoli I, Calabrese V. Hormesis: its impact on medicine and health. Hum Exp Toxicol. 2013;32(2):120–52.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Historical foundations of wound healing and its potential for acceleration: doseresponse considerations. Wound Repair Regen. 2013;21(2):180–93.
Article
PubMed
Google Scholar
Stebbing AR. Interpreting ‘dose-response’ curves using homeodynamic data: with an improved explanation for hormesis. Dose Response. 2009;7(3):221–33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sagan LA. On radiation, paradigms, and hormesis. Science. 1989;245:574–621.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Cancer risk assessment: Optimizing human health through linear dose–response models. Food Chem Toxicol. 2015;81:137–40.
Article
CAS
PubMed
Google Scholar
Luckey TD. Radiation hormesis: the good, the bad, and the ugly. Dose Response. 2006;4(3):169–90.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thong H-Y, Maibach HI. Hormesis [biological effects of low level exposure (BELLE)] and dermatology. Dose-Response. 2008;6:1–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Calabrese V, Scapagnini G, Davinelli S, Koverech G, Koverech A, De Pasquale Salinaro AT, et al. Sex hormonal regulation and hormesis in aging and role of vitagenes. J Cell Commun Signal. 2014;8(4):369–84.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eaton DL and Klaassen CD. Principles of toxicology. In: Casarett & Doull’s Essentials of Toxicology, Chapter 2. The McGraw-Hill Companies, Inc. pp. 6–20.
Calabrese V, Butterfield DA, Stella AM. Aging and oxidative stress response in the CNS. In: Lajtha A, Perez-Polo JR, Rossner S, editors. Development and Aging Changes in the Nervous System. Handbook ofNeurochemistry and Molecular Neurobiology. 3rd ed. 2008. p. 128–234.
Google Scholar
Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. What is hormesis and its relevance to healthy aging and longevity? Biogerontology. 2015;16(6):693-707
Calabrese EJ. Evidence that hormesis represents an “overcompensation” response to a disruption in homeostasis. Ecotoxicol Environ Saf. 1999;42:135–7.
Article
Google Scholar
Calabrese EJ, Baldwin LA. Chemical hormesis: Its historical foundations as a biological hypothesis. Hum Exper Toxicol. 2000;19:2–31.
Article
CAS
Google Scholar
Calabrese EJ. Hormesis: Toxicological foundations and role in aging research. Exp Gerontol. 2013;48(1):99–102.
Article
CAS
PubMed
Google Scholar
Calabrese EJ, Blain RB. Hormesis and plant biology. Environ Poll. 2009;157:42–8.
Article
CAS
Google Scholar
Calabrese EJ, Baldwin LA. The hormetic dose response model is more common than the threshold model in toxicology. Tox Sci. 2003;71:246–50.
Article
CAS
Google Scholar
Calabrese EJ, Baldwin LA. Ethanol and hormesis. Crit Rev Toxicol. 2003;33:407–24.
Article
CAS
PubMed
Google Scholar
Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol Appl Pharmacol. 2007;222:122–8.
Article
CAS
PubMed
Google Scholar
Rattan SIS. Hormetic modulation of aging and longevity by mild heat stress. Dose Response. 2005;3:533–46.
Article
PubMed Central
CAS
Google Scholar
Rattan SIS. Targeting the age-related occurrence, removal, and accumulation of molecular damage by hormesis. Ann N Y Acad Sci. 2010;1197:28–32.
Article
CAS
PubMed
Google Scholar
Rattan SIS, Ali RE. Hormetic prevention of molecular damage during cellular aging of human skin fibroblasts and keratinocytes. Ann N Y Acad Sci. 2007;1100:424–30.
Article
CAS
PubMed
Google Scholar
Rattan SIS, Gonzalez-Dosal R, Nielsen ER, Kraft DC, Weibel J, Kahns S. Slowing down aging from within: Mechanistic aspect of anti-aging hormetic effects of mild heat stress on human cells. Acta Biochimica Polonica. 2004;51(2):481–92.
CAS
PubMed
Google Scholar
Sarup P, Sorensen P, Loeschcke V. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan. Exp Gerontol. 2014;50:34–9.
Article
CAS
PubMed
Google Scholar
Arumugam TV, Gleichmann M, Tang SC, et al. Hormesis/preconditioning mechanisms, the nervous system and aging. Ageing Res Rev. 2006;5(2):165–78.
Article
CAS
PubMed
Google Scholar
Mattson MP. Hormesis and disease resistance: activation of cellular stress response pathways. Hum Exp Toxicol. 2008;27(2):155–62.
Article
PubMed
Google Scholar
Mattson MP, Chan SL, Duan WZ. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002;82(3):637–72.
Article
CAS
PubMed
Google Scholar
Okun E, Mattson MP. Neuronal vulnerability to oxidative damage in aging. In: Veasey SC, editor. Oxidative Neural Injury Book Series: Contemporary Clinical Neuroscience. 2009. p. 83–95.
Chapter
Google Scholar
Flood JF, Smith GE, Cherkin A. Memory retention – Potentiation of cholinergic drugcombinations in mice. Neurobiol Aging. 1983;4:37–43.
Article
CAS
PubMed
Google Scholar
Flood JF, Smith GE, Cherkin A. Memory enhancement – Supra-additive effect of subcutaneous chlolinergic drug-combinations in mice. Psychopharmacology. 1985;86:61–7.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Neuroscience and Hormesis: Overview and general findings. Crit Rev Toxicol. 2008;38:249–52.
Article
CAS
PubMed
Google Scholar
Calabrese EJ, Baldwin LA. Hormesis and high risk groups. Reg Tox Pharm. 2002;35:14–428.
Article
CAS
Google Scholar
Calabrese EJ. Cancer biology and hormesis: Human tumore cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol. 2005;35:463–582.
Article
CAS
PubMed
Google Scholar
Randall WA, Price CW, Welch H. Demonstration of hormesis (increase in fatality rate) by penicillin. Am J Pub Health. 1947;37:421–5.
Article
PubMed Central
Google Scholar
Welch H, Price CW, Randall WA. Increase in fatality rate of E. Typhosa for white mice by streptomycin. J Am Pharm. 1946;35:155–8.
Article
CAS
Google Scholar
Abramowitz J, Dai C, Hirschi KK, Dmitieva RI, Doris PA, Liu L, et al. Ouabain- and marinobufagenin-induced proliferation of human umbilical vein smooth muscle cells and a rat vascular smooth muscle cell lines, A7r5. Circulation. 2003;108:3048–53.
Article
CAS
PubMed
Google Scholar
Chueh S-C, Guh J-H, Chen J, Lai M-K, Teng C-M. Dual effects of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol. 2001;166:347–53.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. An assessment of anxiolytic drug screening tests: hormetic dose responses predominate. Crit Rev Toxicol. 2008;38(6):489–542.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Modulation of the epileptic seizure threshold: implications of biphasic dose responses. Crit Rev Toxicol. 2008;38(6):543–56.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Pain and U-shaped dose responses: occurrence, mechanisms, and clinical implications. Crit Rev Toxicol. 2008;38(7):579–90.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Alzheimer’s disease drugs: an application of the hormetic dose-response model. Crit Rev Toxicol. 2008;38(5):419–51.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Drug therapies for stroke and traumatic brain injury often display U-shaped dose responses: occurrence, mechanisms, and clinical implications. Crit Rev Toxicol. 2008;38(6):557–77.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Enhancing and regulating neurite outgrowth. Crit Rev Toxicol. 2008;38(4):391–418.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Astrocytes: adaptive responses to low doses of neurotoxins. Crit Rev Toxicol. 2008;38(5):463–71.
Article
CAS
PubMed
Google Scholar
Puzzo D, Privitera L, Palmeri A. Hormetic effect of amyloid-beta peptide in synaptic plasticity and memory. Neurobiol Aging. 2012;33:1484. e15-1484.e24.
Article
PubMed
CAS
Google Scholar
Zhang Y, Lu R, Liu W, Wu Y, Qian H, Zhao X, et al. Hormetic effects of acute methylmercury exposure on GRP78 expression in rat brain cortex. Dose–response. 2013;11:109–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ali RE, Rattan SIS. Curcumin’s biphasic hormetic response on proteasome activity and heat-shock protein synthesis in human keratinocytes. Ann NY Acad Sci. 2006;1067:394–9.
Article
CAS
PubMed
Google Scholar
Nánási PP, Sarkozi S, Szigeti G, Jona I, Szegedi C, Szabo A, et al. Biphasic effect of bimoclomol on calcium handling in mammalian ventricular myocardium. Brit J Pharmacol. 2000;129:1405–12.
Article
Google Scholar
Wang CR, Tian Y, Wang XR, Yu HX, Lu XW, Wang C, et al. Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings. Chemosphere. 2010;80:965–71.
Article
CAS
PubMed
Google Scholar
Xu X, Huang Z, Wang C, Zhong L, Tian Y, Li D, et al. Toxicological effects, mechanisms, and implied toxicity threshold in the roots of Vicia faba L. seedlings grown in copper-contaminated soil. Environ Sci Pollut Res. 2015;22:13858–69.
Article
CAS
Google Scholar
Baruah K, Norouzitallab P, Linayati L, Sorgeloos P, Bossier P. Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios. Dev Comp Immunol. 2014;46:470–9.
Article
CAS
PubMed
Google Scholar
Lagisz M, Hector KL, Nakagawa S. Life extension after heat shock exposure: assessing meta-analytic evidence for hormesis. Age Res Rev. 2013;12:653–60.
Article
Google Scholar
Hranitz JM, Abramson CI, Carter RP. Ethanol increases HSP70 concentrations in honeybee (Apis mellifera L.) brain tissue. Alcohol. 2010;44:275–82.
Article
CAS
PubMed
Google Scholar
Damelin LH, Vokes S, Whitcutt JM, Damelin SB, Alexander JJ. Hormesis: a stress response in cells exposed to low levels of heavy metals. Hum Exper Toxicol. 2000;19:420–30.
Article
CAS
Google Scholar
Sutton DJ, Tchounwou PB, Ninashvili N, Shen E. Mercury induced cytotoxicity and transcriptionally activates stress genes in human liver carcinoma (HepG2) cells. Int J Mol Sci. 2002;3:965–84.
Article
CAS
Google Scholar
Shutoh Y, Takeda M, Ohtsuka R, Haishima A, Yamaguchi S, Fujie H, et al. Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: implication of hormesis-like effects. J Toxicol Sci. 2009;34(5):469–82.
Article
CAS
PubMed
Google Scholar
Li SQ, Wang DM, Shu YJ, Wan XD, Xu ZS, Li EZ. Proper heat shock pretreatment reduces acute liver injury induced by carbon tetrachloride and accelerates liver repair in mice. J Toxicol Pathol. 2013;26:363–73.
Google Scholar
Joyeux M, Godin-Ribuot D, Patel A, Demenge P, Yellon DM, Ribuot C. Infarct size-reducing effect of heat stress and a1 adrenoceptors in rats. Brit J Pharmacol. 1998;125:645–50.
Article
CAS
Google Scholar
Joyeux M, Lagneux C, Bricca G, Yellon DM, Demenge P, Ribuot C. Heat stress-induced resistance to myocardial infarction in the isolated heart from transgenic [(mREN-2)27] hypertensive rats. Cardio Res. 1998;40:124–30.
Article
CAS
Google Scholar
Joyeux M, Arnaud C, Godin-Ribuot D, Demenge P, Lamontagne D, Ribuot C. Endocannabinoids are implicated in the infarct size-reducing effect conferred by heat stress preconditioning in isolated rat hearts. Cardio Res. 2002;55:619–25.
Article
CAS
Google Scholar
Patel HH, Hsu A, Gross GJ. Attenuation of heat shock-induced cardioprotection by treatment with the opiate receptor antagonist naloxone. Am J Physiol Heart Circ Physiol. 2002;282:H2011–7.
Article
CAS
PubMed
Google Scholar
Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21:255–61.
Article
CAS
PubMed
Google Scholar
Zhou H, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol. 2001;19:375–8.
Article
CAS
PubMed
Google Scholar
Shelton MD, Mieyal JJ. Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cells. 2008;25(3):332–46.
PubMed Central
CAS
PubMed
Google Scholar
Chakravarti B, Chakravarti DN. Oxidative modification of proteins: age-related changes. Gerontology. 2007;53:128–39.
Article
CAS
PubMed
Google Scholar
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.
Article
CAS
PubMed
Google Scholar
Butterfield DA, Abdul HM, Newman S, Reed T. Redox proteomics in some age-related neurodegenerative disorders or models thereof. NeuroRx. 2006;3:344–57.
Article
PubMed Central
CAS
PubMed
Google Scholar
Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272:20313–6.
Article
CAS
PubMed
Google Scholar
Butterfield DA, Sultana R. Redox proteomics: Understanding oxidative stress in the progression of age-related neurodegenerative disorders. Expert Rev Proteomics. 2008;5:157–60.
Article
CAS
PubMed
Google Scholar
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RA, et al. Redox proteomics in selected neurodegenerative disorders: From its infancy to future applications. Antioxid Redox Signal. 2012;17:1610–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stadtman ER, Levine RL. Chemical modification of proteins by reactive oxygen species. In: Dalle-Donne I, Scaloni A, Butterfield A, editors. Redox proteomics: from protein modifications to cellular dysfunction and diseases. Hoboken: John Wiley & Sons Inc.; 2006. p. 3–23.
Google Scholar
Barone E, Di Domenico F, Cenini G, Sultana R, Cini C, Preziosi P, et al. Biliverdin reductase-A protein levels and activity in the brains of subjects with Alzheimer disease and mild cognitive impairment. Biochimica et Biophysica Acta. 2011;1812(4):480–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Colzani M, Aldini G, Carini M. Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts. J Proteomics. 2013;92:28–50.
Article
CAS
PubMed
Google Scholar
Colzani M, Criscuolo A, De Maddis D, Garzon D, Yeum KJ, Vistoli G, et al. A novel high resolution MS approach for the screening of 4-hydroxy-trans-2-nonenal sequestering agents. J Pharm Biomed Anal. 2014;91:108–18.
Article
CAS
PubMed
Google Scholar
Baraibar MA, Ladouce R, Friguet B. Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteomics. 2013;92:63–70.
Article
CAS
PubMed
Google Scholar
Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci. 2012;317(1–2):1–5.
Article
CAS
PubMed
Google Scholar
Baynes JW, Gillery P. Frontiers in research on the Maillard reaction in aging and chronic disease. Clin Chem Lab Med. 2014;52(1):1–3.
Article
CAS
PubMed
Google Scholar
Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid β-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging. 2002;23:655–64.
Article
PubMed
Google Scholar
Shichiri M. The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr. 2014;54:151–60. CrossRef PubMed.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J Neurochem. 1997;68:255–64.
Article
CAS
PubMed
Google Scholar
Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller JN, Waeg G, et al. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem. 1997;69:1161–9.
Article
CAS
PubMed
Google Scholar
Sultana R, Butterfield DA. Proteomics identification of carbonylatedand HNE-bound brain proteins in Alzheimer’s disease. Methods Mol Biol. 2009;566:123–35.
Article
CAS
PubMed
Google Scholar
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med. 2011;51:1302–19.
Article
CAS
PubMed
Google Scholar
Markesbery WR, Lovell MA. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging. 1998;19:33–6.
Article
CAS
PubMed
Google Scholar
Groitl B, Jakob U. Thiol-based redox switches. Biochim Biophys Acta. 1844;2014:1335–42.
Google Scholar
Ghezzi P. Oxidoreduction of protein thiols in redox regulation. Biochem Soc Trans. 2005;33:1378–81.
Article
CAS
PubMed
Google Scholar
Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I. Sglutathionylation: From redox regulation of protein functions to human diseases. J Cell Mol Med. 2004;8:201–12.
Article
CAS
PubMed
Google Scholar
Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997;11:526–34.
CAS
PubMed
Google Scholar
Sheehan D. Detection of redox-based modification in two-dimensional electrophoresis proteomic separations. Biochem Biophys Res Commun. 2006;349:455–62.
Article
CAS
PubMed
Google Scholar
Ghezzi P. Regulation of protein function by glutathionylation. Free Radic Res. 2005;39:573–80.
Article
CAS
PubMed
Google Scholar
Petrushanko IY, Yakushev S, Mitkevich VA, Kamanina YV, Ziganshin RH, Meng X, et al. S-Glutathionylation of the Na, k-atpase catalytic α subunit is a determinant of the enzyme redox sensitivity. J Biol Chem. 2012;287:32195–205.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human t lymphocytes. Proc Natl Acad Sci USA. 2002;99:3505–10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cabiscol E, Levine RL. The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci USA. 1996;93:4170–4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Klatt P, Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem. 2000;267(16):4928–44.
Article
CAS
PubMed
Google Scholar
Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia de Lacoba M, Perez-Sala D, et al. Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry. 2001;40:14134–42.
Article
CAS
PubMed
Google Scholar
Davis DA, Newcomb FM, Starke DW, Ott DE, Mieyal JJ, Yarchoan R. Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. J Biol Chem. 1997;272:25935–40.
Article
CAS
PubMed
Google Scholar
Liang JN, Pelletier MR. Destabilization of lens protein conformation by glutathione mixed disulfide. Exp Eye Res. 1988;47:17–25.
Article
CAS
PubMed
Google Scholar
Ahsan H. 3-Nitrotyrosine: a biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions. Hum Immunol. 2013;74:1392–9.
Article
CAS
PubMed
Google Scholar
Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem. 2003;85:1394–401.
Article
CAS
PubMed
Google Scholar
Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal. 2006;8:2021–37.
Article
CAS
PubMed
Google Scholar
Chait BT. Chemistry. Mass spectrometry: bottom-up or top-down? Science. 2006;314:65–6.
Article
CAS
PubMed
Google Scholar
Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol. 2006;545:39–50.
Article
CAS
PubMed
Google Scholar
Wittmann-Liebold B, Graack HR, Pohl T. Two-dimensional gelelectrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics. 2006;6:4688–703.
Article
CAS
PubMed
Google Scholar
Kim H, Eliuk S, Deshane J, Meleth S, Sanderson T, Pinner A, et al. 2D gel proteomics: An approach to study age-related differences in protein abundance or isoform complexity in biological samples. Methods Mol Biol. 2007;371:349–91.
Article
CAS
PubMed
Google Scholar
Sheehan D, McDonagh B, Barcena JA. Redox proteomics. Expert Rev Proteomics. 2010;7:1–4.
Article
CAS
PubMed
Google Scholar
Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18:2071–7.
Article
CAS
PubMed
Google Scholar
Gharbi S, Gaffney P, Yang A, Zvelebil MJ, Cramer R, Waterfield MD, et al. Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics. 2002;1:91–8.
Article
CAS
PubMed
Google Scholar
Timms JF, Cramer R. Difference gel electrophoresis. Proteomics. 2008;8:4886–97.
Article
CAS
PubMed
Google Scholar
Moruz L, Pichler P, Stranzl T, Mechtler K, Kall L. Optimized nonlinear gradients for reversed-phase liquid chromatography in shotgun proteomics. Anal Chem. 2013;85:7777–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schirmer EC, Yates III JR, Gerace L. MudPIT: A powerful proteomics toolfor discovery. Discov Med. 2003;3:38–9.
PubMed
Google Scholar
Maes K, Smolders I, Michotte Y, Van EA. Strategies to reduce aspecific adsorption of peptides and proteins in liquid chromatography-mass spectrometry based bioanalyses: an overview. J Chromatogr A. 2014;1358:1–13.
Article
CAS
PubMed
Google Scholar
Stalmach A, Albalat A, Mullen W, Mischak H. Recent advances in capillaryelectrophoresis coupled to mass spectrometry for clinical proteomic applications. Electrophoresis. 2013;34:1452–64.
Article
CAS
PubMed
Google Scholar
Addona TA, Abbatiello SE, Schilling B, Skates SJ, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring- based measurements of proteins in plasma. Nat Biotechnol. 2009;27:633–41.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lindemann C, Leichert LI. Quantitative redox proteomics: the NOxICAT method. Methods Mol Biol. 2012;893:387–403.
Article
CAS
PubMed
Google Scholar
Thompson A, Schafer J, Kuhn K, Kienle S, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75:1895–904.
Article
CAS
PubMed
Google Scholar
Uehara T, Nakamura T, Yao D, Shi ZQ, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441:513–7.
Article
CAS
PubMed
Google Scholar
Murray CI, Uhrigshardt H, O'Meally RN, Cole RN, et al. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol Cell Proteomics. 2012;11:M111.013441.
Article
PubMed Central
PubMed
CAS
Google Scholar
Madian AG, Regnier FE. Proteomic identification of carbonylatedproteins and their oxidation sites. J Proteome Res. 2010;9:3766–80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Palmese A, De Rosa C, Marino G, Amoresano A. Dansyl labeling and bidimensional mass spectrometry to investigate protein carbonylation. Rapid Commun Mass Spectrom. 2011;25:223–31.
Article
CAS
PubMed
Google Scholar
Cornelius C, Perrotta R, Graziano A, Calabrese EJ, Calabrese V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a “chi”. Immun Ageing. 2013;10(1):10–5.
Article
CAS
Google Scholar
Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting Hsp90/Hsp70-Based Protein Quality Control for Treatment of Adult Onset Neurodegenerative Diseases. Annu Rev Pharmacol Toxicol. 2015;55:353–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calabrese V, Mancuso C, Ravagna A, Perluigi M, Cini C, De Marco C, et al. In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem. 2007;101:709–17.
Article
CAS
PubMed
Google Scholar
Calabrese V. Highlight Commentary on “Redox proteomics analysis of oxidatively 3 modified proteins in G93A–SOD1 transgenic mice—A model of 4 familial amyotrophic lateral sclerosis”. Free Radical Biol Med. 2007;43:160–2.
Article
CAS
Google Scholar
Calabrese V, Mancuso C, Sapienza M, Puleo E, Calafato S, Cornelius C, et al. Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress Chaperones. 2007;12:299–306.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mancuso C, Santangelo R, Calabrese V. The heme oxygenase/biliverdin reductase system: a potential drug target in Alzheimer s disease. J Biol Regul Homeost Agent. 2013;13:75–87.
Google Scholar
Currò M, Trovato-Salinaro A, Gugliandolo A, Koverech G, Lodato F, Caccamo D, et al. Resveratrol protects against homocysteine-induced cell damage via cell stress response in neuroblastoma cells. J Neurosci Res. 2015;93(1):149–56.
Article
PubMed
CAS
Google Scholar