Simon AC. COVID-19, a graphic account. Emergencias. 2020;32(3):206–9.
Google Scholar
Sylaja PN, Srivastava MVP, Shah S, Bhatia R, Khurana D, Sharma A, et al. The SARS-CoV-2/COVID-19 pandemic and challenges in stroke care in India. Ann N Y Acad Sci. 2020;1473(1):3–10.
Article
CAS
PubMed
Google Scholar
As We Went to Press. COVID-19 Continues to Spread. Am J Nurs. 2020;120(4):15.
Article
Google Scholar
Centor RM, Fisman DN. Annals on call - understanding the spread of COVID-19. Ann Intern Med. 2020;172(6):OC1.
PubMed
Google Scholar
Mahase E. Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ. 2020;368:m1036.
Article
PubMed
Google Scholar
Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368(6489):395–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daw MA, El-Bouzedi AH. Modelling the epidemic spread of COVID-19 virus infection in northern African countries. Travel Med Infect Dis. 2020;35:101671.
Article
PubMed
PubMed Central
Google Scholar
Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, et al. Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures. Proc Natl Acad Sci U S A. 2020;117(19):10484–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang S, Cao P, Du P, Wu Z, Zhuang Z, Yang L, et al. Early estimation of the case fatality rate of COVID-19 in mainland China: a data-driven analysis. Ann Transl Med. 2020;8(4):128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stafford N. Covid-19: why Germany's case fatality rate seems so low. BMJ. 2020;369:m1395.
Article
PubMed
Google Scholar
Rajgor DD, Lee MH, Archuleta S, Bagdasarian N, Quek SC. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020;20(7):776-7.
Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323(18):1775–6.
CAS
PubMed
Google Scholar
Mi YN, Huang TT, Zhang JX, Qin Q, Gong YX, Liu SY, et al. Estimating instant case fatality rate of COVID-19 in China. Int J Infect Dis. 2020;97:1–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giangreco G. Case fatality rate analysis of Italian COVID-19 outbreak. J Med Virol. 2020;92(7):919–23.
Article
CAS
PubMed
Google Scholar
Fischer F, Raiber L, Boscher C, Winter MH. COVID-19 and the elderly: who cares? Front Public Health. 2020;8:151.
Article
PubMed
PubMed Central
Google Scholar
Etard JF, Vanhems P, Atlani-Duault L, Ecochard R. Potential lethal outbreak of coronavirus disease (COVID-19) among the elderly in retirement homes and long-term facilities, France, March 2020. Euro Surveill. 2020;25(15):2000448.
Article
PubMed Central
Google Scholar
Sinclair AJ, Abdelhafiz AH. Age, frailty and diabetes - triple jeopardy for vulnerability to COVID-19 infection. EClinical Medicine. 2020;22:100343.
Article
CAS
Google Scholar
Osama T, Pankhania B, Majeed A. Protecting older people from COVID-19: should the United Kingdom start at age 60? J R Soc Med. 2020;113(5):169–70.
Article
PubMed
PubMed Central
Google Scholar
Nickel CH, Rueegg M, Pargger H, Bingisser R. Age, comorbidity, frailty status: effects on disposition and resource allocation during the COVID-19 pandemic. Swiss Med Wkly. 2020;150:w20269.
PubMed
Google Scholar
Mahase E. Covid-19: death rate is 0.66% and increases with age, study estimates. BMJ. 2020;369:m1327.
Article
PubMed
Google Scholar
Singh AK, Gupta R, Misra A. Comorbidities in COVID-19: outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab Syndr. 2020;14(4):283–7.
Article
PubMed
PubMed Central
Google Scholar
Gidlof S, Savchenko J, Brune T, Josefsson H. COVID-19 in pregnancy with comorbidities: more liberal testing strategy is needed. Acta Obstet Gynecol Scand. 2020;99(7):948–9.
Article
PubMed
CAS
Google Scholar
Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng KI, Gao F, Wang XB, Sun QF, Pan KH, Wang TY, et al. Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism. 2020;108:154244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sattar N, McInnes IB, McMurray JJV. Obesity a risk factor for severe COVID-19 infection: multiple potential mechanisms. Circulation. 2020;142(1):4–6.
Article
CAS
PubMed
Google Scholar
Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev. 2020;21(6):e13034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caussy C, Wallet F, Laville M, Disse E. Obesity is associated with severe forms of COVID-19. Obesity (Silver Spring). 2020;28(7):1175.
Article
CAS
Google Scholar
Ong SWX, Young BE, Leo YS, Lye DC. Association of higher body mass index (BMI) with severe coronavirus disease 2019 (COVID-19) in younger patients. Clin Infect Dis. 2020;71(16):2300–2.
Article
CAS
PubMed
Google Scholar
Yang J, Hu J, Zhu C. Obesity aggravates COVID-19: a systematic review and meta-analysis. J Med Virol. 2020. https://doi.org/10.1002/jmv.26237.
Argenziano MG, Bruce SL, Slater CL, Tiao JR, Baldwin MR, Barr RG, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ. 2020;369:m1996.
Article
PubMed
PubMed Central
Google Scholar
Belanger MJ, Hill MA, Angelidi AM, Dalamaga M, Sowers JR, Mantzoros CS. Covid-19 and disparities in nutrition and obesity. N Engl J Med. 2020;383(11):e69.
Article
CAS
PubMed
Google Scholar
Devecchi A, Ippolito M, Merlo FD, Pira C, Rahimi F. COVID-19 and obesity. Minerva Gastroenterol Dietol. 2020.
Mauvais-Jarvis F. Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes. 2020;69(9):1857–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muniyappa R, Wilkins KJ. Diabetes, obesity, and risk prediction of severe COVID-19. J Clin Endocrinol Metab. 2020;105(10):dgaa442.
Article
PubMed
Google Scholar
Rottoli M, Bernante P, Belvedere A, Balsamo F, Garelli S, Giannella M, et al. How important is obesity as a risk factor for respiratory failure, intensive care admission and death in hospitalised COVID-19 patients? Results from a single Italian Centre. Eur J Endocrinol. 2020;183(4):389–97.
Article
CAS
PubMed
Google Scholar
Syed AA, Soran H, Adam S. Obesity and covid-19: the unseen risks. BMJ. 2020;370:m2823.
Article
PubMed
Google Scholar
Vaughan CJ, Cronin H, Ryan PM, Caplice NM. Obesity and COVID-19: a Virchow's triad for the 21st century. Thromb Haemost. 2020;120(11):1590–3.
Article
PubMed
Google Scholar
Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F, et al. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin Infect Dis. 2020;71(15):896–7.
Article
CAS
PubMed
Google Scholar
Deng M, Qi Y, Deng L, Wang H, Xu Y, Li Z, et al. Obesity as a Potential Predictor of Disease Severity in Young COVID-19 Patients: A Retrospective Study. Obesity (Silver Spring). 2020;28(10):1815–25.
Article
CAS
Google Scholar
Iacobellis G, Malavazos AE, Ferreira T. COVID-19 rise in Younger adults with Obesity: Visceral Adiposity can predict the Risk. Obesity (Silver Spring). 2020;28(10):1795.
Article
CAS
Google Scholar
Zhang F, Xiong Y, Wei Y, Hu Y, Wang F, Li G, et al. Obesity predisposes to the risk of higher mortality in young COVID-19 patients. J Med Virol. 2020;92(11):2536–42.
Article
CAS
PubMed
Google Scholar
Zheng KI, Gao F, Wang XB, Sun QF, Pan KH, Wang TY, et al. Letter to the editor: obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism. 2020;108:154244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palaiodimos L, Kokkinidis DG, Li W, Karamanis D, Ognibene J, Arora S, et al. Severe obesity is associated with higher in-hospital mortality in a cohort of patients with COVID-19 in the Bronx. New York. Metabolism. 2020;108:154262.
CAS
PubMed
Google Scholar
Gao F, Zheng KI, Wang XB, Sun QF, Pan KH, Wang TY, et al. Obesity is a risk factor for greater COVID-19 severity. Diabetes Care. 2020;43(7):e72–4.
Article
CAS
PubMed
Google Scholar
Chiappetta S, Sharma AM, Bottino V, Stier C. COVID-19 and the role of chronic inflammation in patients with obesity. Int J Obes. 2020;44(8):1790–2.
Article
CAS
Google Scholar
Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020;28(7):1195–9.
Article
CAS
Google Scholar
Portincasa P, Krawczyk M, Smyk W, Lammert F, Di Ciaula A. COVID-19 and nonalcoholic fatty liver disease: two intersecting pandemics. Eur J Clin Investig. 2020;50(10):e13338.
Article
CAS
Google Scholar
Kalligeros M, Shehadeh F, Mylona EK, Benitez G, Beckwith CG, Chan PA, et al. Association of Obesity with Disease Severity among Patients with COVID-19. Obesity (Silver Spring). 2020;28(7):1200–4.
Article
CAS
Google Scholar
Petrilli CM, Jones SA, Yang J, Rajagopalan H, O'Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. 2020;369:m1966.
AB Docherty EH, Green CA, Hardwick H, Pius R, Norman L, Holden KA, Read JM, Dondelinger CG, Merson L, Lee J, Plotkin D, Sigfrid L, Halpin S, Jackson C, Gamble C, Horby PW, Nguyen-Van-Tam JS, ISARICC Investigators, Dunning J, Openshaw PJM, Baillie JK, Semple MG. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. 2020;369:m1985.
Cai Q, Chen F, Wang T, Luo F, Liu X, Wu Q, et al. Obesity and COVID-19 severity in a designated Hospital in Shenzhen. China. Diabetes Care. 2020;43(7):1392–8.
Article
CAS
PubMed
Google Scholar
Bello-Chavolla OY, Bahena-Lopez JP, Antonio-Villa NE, Vargas-Vazquez A, Gonzalez-Diaz A, Marquez-Salinas A, et al. Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. J Clin Endocrinol Metab. 2020;105(8):dgaa346.
Article
PubMed
Google Scholar
Petersen A, Bressem K, Albrecht J, Thiess HM, Vahldiek J, Hamm B, et al. The role of visceral adiposity in the severity of COVID-19: highlights from a unicenter cross-sectional pilot study in Germany. Metabolism. 2020;110:154317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urra JM, Cabrera CM, Porras L, Rodenas I. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients. Clin Immunol. 2020;217:108486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giacomelli A, Ridolfo AL, Milazzo L, Oreni L, Bernacchia D, Siano M, et al. 30-day mortality in patients hospitalized with COVID-19 during the first wave of the Italian epidemic: a prospective cohort study. Pharmacol Res. 2020;158:104931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klang E, Kassim G, Soffer S, Freeman R, Levin MA, Reich DL. Morbid Obesity as an Independent Risk Factor for COVID-19 Mortality in Hospitalized Patients Younger than 50. Obesity (Silver Spring). 2020;28(9):1595–9.
Article
CAS
Google Scholar
Palaiodimos L, Kokkinidis DG, Li W, Karamanis D, Ognibene J, Arora S, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx. New York. Metabolism. 2020;108:154262.
CAS
PubMed
Google Scholar
Hamer M, Kivimaki M, Gale CR, David BG. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pettit NN, MacKenzie EL, Ridgway J, Pursell K, Ash D, Patel B, et al. Obesity is Associated with Increased Risk for Mortality Among Hospitalized Patients with COVID-19. Obesity (Silver Spring). 2020;28(10):1806–10.
Article
CAS
Google Scholar
Caussy C, Pattou F, Wallet F, Simon C, Chalopin S, Telliam C, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020;8(7):562–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39.
Article
CAS
PubMed
Google Scholar
Booth A, Magnuson A, Fouts J, Foster MT. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Invest. 2016;26(1):25–42.
CAS
Google Scholar
Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol Metab. 2012;23(8):407–15.
Article
CAS
PubMed
Google Scholar
Duffaut C, Galitzky J, Lafontan M, Bouloumie A. Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem Biophys Res Commun. 2009;384(4):482–5.
Article
CAS
PubMed
Google Scholar
Lu J, Zhao J, Meng H, Zhang X. Adipose tissue-resident immune cells in obesity and type 2 diabetes. Front Immunol. 2019;10:1173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serena C, Keiran N, Ceperuelo-Mallafre V, Ejarque M, Fradera R, Roche K, et al. Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells. 2016;34(10):2559–73.
Article
CAS
PubMed
Google Scholar
Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol. 2014;222(3):R113–27.
Article
CAS
PubMed
Google Scholar
Liu R, Nikolajczyk BS. Tissue immune cells fuel obesity-associated inflammation in adipose tissue and beyond. Front Immunol. 2019;10:1587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cell. 2014;37(5):365–71.
Article
CAS
Google Scholar
Vorotnikov AV, Stafeev IS, Menshikov MY, Shestakova MV, Parfyonova YV. Latent inflammation and defect in adipocyte renewal as a mechanism of obesity-associated insulin resistance. Biochemistry (Mosc). 2019;84(11):1329–45.
Article
CAS
PubMed
Google Scholar
Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):327–31.
CAS
PubMed
Google Scholar
Garcia LF. Immune response, inflammation, and the clinical Spectrum of COVID-19. Front Immunol. 2020;11:1441.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46–e7.
Article
CAS
PubMed
Google Scholar
Leisman DE, Deutschman CS, Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020;46(6):1105–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74.
Article
CAS
PubMed
Google Scholar
Vepa A, Bae JP, Ahmed F, Pareek M, Khunti K. COVID-19 and ethnicity: a novel pathophysiological role for inflammation. Diabetes Metab Syndr. 2020;14(5):1043–51.
Article
PubMed
PubMed Central
Google Scholar
Ryan PM, Caplice NM. Is adipose tissue a reservoir for viral spread, immune activation, and cytokine amplification in coronavirus disease 2019? Obesity (Silver Spring). 2020;28(7):1191–4.
Article
CAS
Google Scholar
Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamer M, Kivimaki M, Gale CR, Batty GD. Lifestyle Risk Factors for Cardiovascular Disease in Relation to COVID-19 Hospitalization: A Community-Based Cohort Study of 387,109 Adults in UK. medRxiv. 2020;2020.05.09.20096438.
Karagiannides I, Pothoulakis C. Obesity, innate immunity and gut inflammation. Curr Opin Gastroenterol. 2007;23(6):661–6.
Article
CAS
PubMed
Google Scholar
Da Costa LA, Arora P, Garcia-Bailo B, Karmali M, El-Sohemy A, Badawi A. The association between obesity, cardiometabolic disease biomarkers, and innate immunity-related inflammation in Canadian adults. Diabetes Metab Syndr Obes. 2012;5:347–55.
PubMed
PubMed Central
Google Scholar
de Heredia FP, Gomez-Martinez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71(2):332–8.
Article
PubMed
CAS
Google Scholar
Rojas-Osornio SA, Cruz-Hernandez TR, Drago-Serrano ME, Campos-Rodriguez R. Immunity to influenza: impact of obesity. Obes Res Clin Pract. 2019;13(5):419–29.
Article
PubMed
Google Scholar
Chng MH, Alonso MN, Barnes SE, Nguyen KD, Engleman EG. Adaptive immunity and antigen-specific activation in obesity-associated insulin resistance. Mediat Inflamm. 2015;2015:593075.
Article
CAS
Google Scholar
Bharath LP, Ip BC, Nikolajczyk BS. Adaptive immunity and metabolic health: harmony becomes dissonant in obesity and aging. Compr Physiol. 2017;7(4):1307–37.
Article
PubMed
Google Scholar
Andersen CJ, Murphy KE, Fernandez ML. Impact of obesity and metabolic syndrome on immunity. Adv Nutr. 2016;7(1):66–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adler BJ, Kaushansky K, Rubin CT. Obesity-driven disruption of haematopoiesis and the bone marrow niche. Nat Rev Endocrinol. 2014;10(12):737–48.
Article
CAS
PubMed
Google Scholar
van den Berg SM, Seijkens TT, Kusters PJ, Beckers L, den Toom M, Smeets E, et al. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J. 2016;30(5):1779–88.
Article
PubMed
CAS
Google Scholar
Karlsson EA, Sheridan PA, Beck MA. Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells. J Nutr. 2010;140(9):1691–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Youm YH, Vandanmagsar B, Rood J, Kumar KG, Butler AA, et al. Obesity accelerates thymic aging. Blood. 2009;114(18):3803–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat Immunol. 2012;13(8):707–12.
Article
CAS
PubMed
Google Scholar
Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16–22.
Article
CAS
PubMed
Google Scholar
Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol. 2010;185(3):1836–45.
Article
CAS
PubMed
Google Scholar
Weitman ES, Aschen SZ, Farias-Eisner G, Albano N, Cuzzone DA, Ghanta S, et al. Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLoS One. 2013;8(8):e70703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai SH, Liao W, Chen SW, Liu LL, Liu SY, Zheng ZD. Association between obesity and clinical prognosis in patients infected with SARS-CoV-2. Infect Dis Poverty. 2020;9(1):80.
Article
PubMed
PubMed Central
Google Scholar
Tsai S, Clemente-Casares X, Zhou AC, Lei H, Ahn JJ, Chan YT, et al. Insulin receptor-mediated stimulation boosts T cell immunity during inflammation and infection. Cell Metab. 2018;28(6):922–34 e4.
Article
CAS
PubMed
Google Scholar
Mirdamadi Y, Bommhardt U, Goihl A, Guttek K, Zouboulis CC, Quist S, et al. Insulin and insulin-like growth factor-1 can activate the phosphoinositide-3-kinase /Akt/FoxO1 pathway in T cells in vitro. Dermatoendocrinol. 2017;9(1):e1356518.
Article
PubMed
PubMed Central
CAS
Google Scholar
Helderman JH, Strom TB. Specific insulin binding site on T and B lymphocytes as a marker of cell activation. Nature. 1978;274(5666):62–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer HJ, Sie C, Schumann E, Witte AK, Dressel R, van den Brandt J, et al. The insulin receptor plays a critical role in T cell function and adaptive immunity. J Immunol. 2017;198(5):1910–20.
Article
CAS
PubMed
Google Scholar
Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94(2):206–18.
Article
CAS
PubMed
Google Scholar
Rebolledo OR, Marra CA, Raschia A, Rodriguez S, Gagliardino JJ. Abdominal adipose tissue: early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet. Horm Metab Res. 2008;40(11):794–800.
Article
CAS
PubMed
Google Scholar
Cherneva RV, Georgiev OB, Petrova DS, Mondeshki TL, Ruseva SR, Cakova AD, et al. Resistin - the link between adipose tissue dysfunction and insulin resistance in patients with obstructive sleep apnea. J Diabetes Metab Disord. 2013;12(1):5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vernochet C, Damilano F, Mourier A, Bezy O, Mori MA, Smyth G, et al. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J. 2014;28(10):4408–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadowaki T, Hara K, Yamauchi T, Terauchi Y, Tobe K, Nagai R. Molecular mechanism of insulin resistance and obesity. Exp Biol Med (Maywood). 2003;228(10):1111–7.
Article
CAS
PubMed
Google Scholar
Hulver MW, Dohm GL. The molecular mechanism linking muscle fat accumulation to insulin resistance. Proc Nutr Soc. 2004;63(2):375–80.
Article
CAS
PubMed
Google Scholar
Bhattacharya S, Dey D, Roy SS. Molecular mechanism of insulin resistance. J Biosci. 2007;32(2):405–13.
Article
CAS
PubMed
Google Scholar
Viardot A, Heilbronn LK, Samocha-Bonet D, Mackay F, Campbell LV, Samaras K. Obesity is associated with activated and insulin resistant immune cells. Diabetes Metab Res Rev. 2012;28(5):447–54.
Article
CAS
PubMed
Google Scholar
Stentz FB, Kitabchi AE. Transcriptome and proteome expressions involved in insulin resistance in muscle and activated T-lymphocytes of patients with type 2 diabetes. Genomics Proteomics Bioinformatics. 2007;5(3–4):216–35.
Article
CAS
PubMed
Google Scholar
Finucane FM, Davenport C. Coronavirus and obesity: could insulin resistance mediate the severity of Covid-19 infection? Front Public Health. 2020;8:184.
Article
PubMed
PubMed Central
Google Scholar
Ren H, Yang Y, Wang F, Yan Y, Shi X, Dong K, et al. Association of the insulin resistance marker TyG index with the severity and mortality of COVID-19. Cardiovasc Diabetol. 2020;19(1):58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh B, Saxena A. Surrogate markers of insulin resistance: a review. World J Diabetes. 2010;1(2):36–47.
Article
PubMed
PubMed Central
Google Scholar
Mahajan R. Insulin resistance: quest for surrogate markers. Int J Appl Basic Med Res. 2017;7(3):149.
Article
PubMed
PubMed Central
Google Scholar
Kim TJ, Kim HJ, Kim YB, Lee JY, Lee HS, Hong JH, et al. Comparison of surrogate markers as measures of uncomplicated insulin resistance in Korean adults. Korean J Fam Med. 2016;37(3):188–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matarese G. Leptin and the immune system: how nutritional status influences the immune response. Eur Cytokine Netw. 2000;11(1):7–14.
CAS
PubMed
Google Scholar
Kim SY, Lim JH, Choi SW, Kim M, Kim ST, Kim MS, et al. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor. Biochem Biophys Res Commun. 2010;394(3):562–8.
Article
CAS
PubMed
Google Scholar
Fernandez-Riejos P, Najib S, Santos-Alvarez J, Martin-Romero C, Perez-Perez A, Gonzalez-Yanes C, et al. Role of leptin in the activation of immune cells. Mediat Inflamm. 2010;2010:568343.
Article
CAS
Google Scholar
Zhou Y, Rui L. Leptin signaling and leptin resistance. Front Med. 2013;7(2):207–22.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Yang X, Yu S, Zheng R. The Leptin resistance. Adv Exp Med Biol. 2018;1090:145–63.
Article
CAS
PubMed
Google Scholar
Enriori PJ, Evans AE, Sinnayah P, Cowley MA. Leptin resistance and obesity. Obesity (Silver Spring). 2006;14(Suppl 5):254S–8S.
Article
CAS
Google Scholar
Rebello CJ, Kirwan JP, Greenway FL. Obesity, the most common comorbidity in SARS-CoV-2: is leptin the link? Int J Obes. 2020;44(9):1810–7.
Article
CAS
Google Scholar
Higham A, Singh D. Increased ACE2 Expression in the Bronchial Epithelium of COPD Patients who are Overweight. Obesity (Silver Spring). 2020;28(9):1586–9.
Article
CAS
Google Scholar
Jia XY, Lu C, Chen S, Liu Y, Bai Q, Lu JY. Two things about COVID-19 might need attention. Preprints. 2020;2020020315.
Gupte M, Boustany-Kari CM, Bharadwaj K, Police S, Thatcher S, Gong MC, et al. ACE2 is expressed in mouse adipocytes and regulated by a high-fat diet. Am J Phys Regul Integr Comp Phys. 2008;295(3):R781–8.
CAS
Google Scholar
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, et al. Specific biological features of adipose tissue, and their impact on HIV persistence. Front Microbiol. 2019;10:2837.
Article
PubMed
PubMed Central
Google Scholar
Boulant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, McLauchlan J. Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner. Traffic. 2008;9(8):1268–82.
Article
CAS
PubMed
Google Scholar
Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol. 2007;9(9):1089–97.
Article
CAS
PubMed
Google Scholar
Ogawa K, Hishiki T, Shimizu Y, Funami K, Sugiyama K, Miyanari Y, et al. Hepatitis C virus utilizes lipid droplet for production of infectious virus. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(7):217–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roingeard P, Hourioux C, Blanchard E, Prensier G. Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy. Histochem Cell Biol. 2008;130(3):561–6.
Article
CAS
PubMed
Google Scholar
Targher G, Zoppini G, Moghetti P, Day CP. Disorders of coagulation and hemostasis in abdominal obesity: emerging role of fatty liver. Semin Thromb Hemost. 2010;36(1):41–8.
Article
CAS
PubMed
Google Scholar
De Pergola G, Pannacciulli N. Coagulation and fibrinolysis abnormalities in obesity. J Endocrinol Investig. 2002;25(10):899–904.
Article
Google Scholar
Abdollahi M, Cushman M, Rosendaal FR. Obesity: risk of venous thrombosis and the interaction with coagulation factor levels and oral contraceptive use. Thromb Haemost. 2003;89(3):493–8.
Article
CAS
PubMed
Google Scholar
Gazzaruso C, Paolozzi E, Valenti C, Brocchetta M, Naldani D, Grignani C, et al. Association between antithrombin and mortality in patients with COVID-19. A possible link with obesity. Nutr Metab Cardiovasc Dis. 2020;30(11):1914–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braun N, Hoess C, Kutz A, Christ-Crain M, Thomann R, Henzen C, et al. Obesity paradox in patients with community-acquired pneumonia: is inflammation the missing link? Nutrition. 2017;33:304–10.
Article
PubMed
Google Scholar
Cho WH, Oh JY, Yeo HJ, Han J, Kim J, Hong SB, et al. Obesity survival paradox in pneumonia supported with extracorporeal membrane oxygenation: analysis of the national registry. J Crit Care. 2018;48:453–7.
Article
PubMed
Google Scholar
Corrales-Medina VF, Valayam J, Serpa JA, Rueda AM, Musher DM. The obesity paradox in community-acquired bacterial pneumonia. Int J Infect Dis. 2011;15(1):e54–7.
Article
PubMed
Google Scholar
Nie W, Zhang Y, Jee SH, Jung KJ, Li B, Xiu Q. Obesity survival paradox in pneumonia: a meta-analysis. BMC Med. 2014;12:61.
Article
PubMed
PubMed Central
Google Scholar
Biscarini S, Colaneri M, Ludovisi S, Seminari E, Pieri TC, Valsecchi P, et al. The obesity paradox: analysis from the SMAtteo COvid-19 REgistry (SMACORE) cohort. Nutr Metab Cardiovasc Dis. 2020;30(11):1920–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed SI, Hasan SMT, Ahmed T. Obesity is a potential risk factor for covid-19 associated morbidity and mortality in urban Bangladesh. BMJ. 2020;370:m2811.
Article
PubMed
Google Scholar
Asare S, Sandio A, Opara IN, Riddle-Jones L, Palla M, Renny N, et al. Higher obesity trends among African Americans are associated with increased mortality in infected COVID-19 patients within the City of Detroit. SN Compr Clin Med. 2020:1–3.
de Siqueira JVV, Almeida LG, Zica BO, Brum IB, Barcelo A, de Siqueira Galil AG. Impact of obesity on hospitalizations and mortality, due to COVID-19: a systematic review. Obes Res Clin Pract. 2020;14(5):398–403.
Article
PubMed
PubMed Central
Google Scholar
Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19. Meta-analysis. Obes Res Clin Pract. 2020;14(4):295–300.
Article
PubMed
PubMed Central
Google Scholar
Rapp J, Lieberman-Cribbin W, Tuminello S, Taioli E. Male sex, severe obesity, older age, and chronic kidney disease are associated with COVID-19 severity and mortality in New York City. Chest. 2020;S0012-3692(20)34288-4.
Tartof SY, Qian L, Hong V, Wei R, Nadjafi RF, Fischer H, et al. Obesity and mortality among patients diagnosed with COVID-19: results from an integrated health care organization. Ann Intern Med. 2020;173(10):773–81.
Article
PubMed
Google Scholar