Skip to main content

Adverse environmental conditions influence age-related innate immune responsiveness



The innate immune system plays an important role in the recognition and induction of protective responses against infectious pathogens, whilst there is increasing evidence for a role in mediating chronic inflammatory diseases at older age. Despite indications that environmental conditions can influence the senescence process of the adaptive immune system, it is not known whether the same holds true for the innate immune system. Therefore we studied whether age-related innate immune responses are similar or differ between populations living under very diverse environmental conditions.


We compared cross-sectional age-related changes in ex vivo innate cytokine responses in a population living under affluent conditions in the Netherlands (age 20–68 years old, n = 304) and a population living under adverse environmental conditions in Ghana (age 23–95 years old, n = 562).


We found a significant decrease in LPS-induced Interleukin (IL)-10 and Tumor Necrosis Factor (TNF) production with age in the Dutch population. In Ghana a similar age-related decline in IL-10 responses to LPS, as well as to zymosan, or LPS plus zymosan, was observed. TNF production, however, did not show an age-associated decline, but increased significantly with age in response to co-stimulation with LPS and zymosan.


We conclude that the decline in innate cytokine responses is an intrinsic ageing phenomenon, while pathogen exposure and/or selective survival drive pro-inflammatory responses under adverse living conditions.


The innate immune system plays a key role in the first line recognition and clearance of pathogens, whilst orchestrating down-stream adaptive immune responses. An adequate innate immune response consists of a delicate balance between pro-inflammatory responses that facilitate pathogen clearance, and counteracting anti-inflammatory responses that control excessive systemic inflammatory host responses [14]. Ageing is associated with an impaired capacity of the innate immune system to produce pro- as well as anti-inflammatory cytokines [5, 6], which weakens the ability to respond to infections and cancers and has been associated with increased mortality in the elderly [7]. Besides genetic and intrinsic factors, this senescence process of the innate immune system could be environmentally driven.

As far as the adaptive immune system is concerned, there are indications that a high versus low exposure to infectious pathogens influences the ability to produce type-1 and type-2 T helper cell cytokine responses [8]. In addition, there is accumulating evidence that chronic infections, such as with CMV [9], contribute to the age-related decline in T cell cytokine responses. Besides changes in the T cell compartment itself [10], alterations in the innate immune system may be responsible for this observed variation in T cell responsiveness. There are indications that chronic infections, such as with helminths, can modulate Toll-like receptor (TLR)-mediated innate immune responses [11, 12], and mouse studies have provided evidence for a decline in innate immune responses with increasing age [13, 14]. However, the role of environmental conditions in age-related changes in innate immune responses has not been assessed before. We suggest that in line with observations for T cell responses, persistent immune challenges will accelerate the senescence of the innate immune system in populations experiencing lifelong exposure to infections. However, as we have hypothesized previously, infectious pressure may not allow lower immune responsiveness, and this enhanced age-related decline in innate immune responses may for that reason be distorted by a selective survival of individuals producing strong pro-inflammatory immune responses [15].

The aim of this study was to compare differences in cross-sectional age-related changes in inflammatory immune responses in two populations living under very different environmental conditions: one population born and raised under affluent conditions in the Netherlands; the other population living under lifelong strong adverse conditions in a remote area of the Garu-Tempane district in Ghana. For this reason we studied the production capacity of ex vivo-induced levels of the pro-inflammatory cytokine Tumor Necrosis Factor (TNF) and anti-inflammatory cytokine Interleukin (IL)-10 in both populations.


The Dutch study population consisted of 304 adults, of which 138 were male and 166 were female, with an age-range of 20–68 years (median age is 35 years). The Ghanaian study population consisted of 562 adults, 59 males and 503 females, and with an age-range of 23–95 years (median age is 48 years) were significantly older than the Dutch study population (p < 0.001).

In the Dutch study population the ex vivo LPS-induced production of TNF (median is 6878, pg/ml; IQR 5379 – 9431) and IL-10 (median is 2201 pg/ml; IQR 1776 – 2703) was significantly lower compared to the Ghanaian population (TNF: median is 12532 pg/ml; IQR 7789 – 18979, p < 0.001) (IL-10: median is 4370 pg/ml; IQR 3151 – 5967, p < 0.001)). In addition, in response to zymosan or LPS/zymosan co-stimulation the Ghanaian population produced median TNF levels of 12599 pg/ml (IQR 8504 – 18281) and 14597 pg/ml (IQR 8704 – 20757), and median IL-10 levels of 210 pg/ml (IQR 121 – 360) and 581 pg/ml (IQR 354 – 941), respectively.

A significant age-related decrease in ex vivo LPS-induced production of both IL-10 and TNF was observed in the Dutch study population (Table 1 and Figure 1). Similarly, among Ghanaian adults ex vivo LPS-induced IL-10 production decreased with age (Table 1 and Figure 2). This was, however, not observed for LPS-induced TNF production, which remained unchanged with increasing age. The age-related decrease in IL-10 responses in the Ghanaian study population was not different to that in the Dutch population (p for interaction = 0.202), whereas that of TNF was (p-int = 0.067). Also in response to zymosan and LPS/zymosan stimulation, IL-10 production significantly decreased with age in the Ghanaian study adults. TNF production remained unchanged in response to zymosan but increased significantly in response to LPS/zymosan co-stimulation (Table 1 and Figure 2).

Figure 1
figure 1

Age-related pro- (TNF) and anti-inflammatory (IL-10) cytokine responses in the Dutch study population (n = 304). Data represent cytokine production upon ex vivo stimulation with LPS and are expressed as z-scores with standard errors indicating the deviance from the population mean (zero-value). P-values indicate a trend in cytokine production over age.

Figure 2
figure 2

Age-related pro- (TNF) and anti-inflammatory (IL-10) cytokine responses in the Ghanaian study population (n = 562). Data represent cytokine production upon ex vivo stimulation with LPS and are expressed as z-scores with standard errors indicating the deviance from the population mean (zero-value). P-values indicate a trend in cytokine production over the age.

Table 1 Age-dependent decrease of cytokine production

As males were underrepresented in the Ghanaian study population we repeated our analysis by selecting for women only. In line with findings for the total study population, IL-10 production decreased with age in response to all stimuli (LPS: -0.061 SD per 10 years, (SE = 0.029), p = 0.039; zymosan: -0.129 SD per 10 years (SE = 0.029), p < 0.001; LPS/zymosan: -0.101 SD per 10 years (SE = 0.030), p = 0.001) in the group of Ghanaian women, and similar patterns were observed for TNF production (LPS: -0.002 SD per 10 years (SE = 0.029), p = 0.94; zymosan: -0.024 SD per 10 years (SE = 0.030), p = 0.43; LPS/zymosan: 0.064 SD per 10 years (SE = 0.031), p = 0.039). Also for women in the Dutch study population, similar patterns were observed as in the total population: IL-10 changed -0.161 SD per 10 years (SE = 0.061) (P = 0.009) and TNF changed -0.121 SD per 10 years (SE = 0.051) (p = 0.020). Given the differences in age-range in the Dutch and the Ghanaian study population, we repeated the analyses of the Ghanaian sample, restricting to participants for the same age range as in the Dutch sample (22 to 68 years). Here similar results were observed for IL10 production upon stimulation with LPS (-0.100 [0.036], p = 0.005), zymosan (-0.199 [0.035], p < 0.001) and LPS/zymosan (-0.154 [0.036], p < 0.001). Also for TNF similar results were observed upon stimulation with LPS (0.005 [0.036], p = 0.89), zymosan (-0.026 [0.037], p = 0.48) and LPS/zymosan (0.067 [0.038], p = 0.077).


In this study we have shown that in an adult Dutch population that lived under affluent conditions for their entire life, there is a gradual decline in the production of ex vivo LPS-induced anti-inflammatory IL-10 as well as pro-inflammatory TNF response with increasing age. A similar decline in IL-10 production was observed in the Ghanaian adults that have experienced a lifelong exposure to infectious pathogens. In contrast TNF responses to LPS remained unchanged and in response to co-stimulation with LPS and zymosan TNF production even significantly increased with age among Ghanaians.

There are several possible explanations for these data, as an age-related decline in the cytokine production capacity of the innate immune system may be intrinsically regulated, environmentally driven or be a result of selective survival. First, we believe that in the Dutch study population that lives in an affluent environment with low infectious exposure and where mortality rates up to the age of 80 years are low, intrinsic age-related effects play a pivotal role and explain the age-related decline in cytokine production. This includes an age-related lower expression of Toll-like receptors [16] and impaired function of all cells of the innate immune system [1719] that together results in a lower production capacity of cytokines. We propose that the same intrinsic mechanism of senescence of the innate immune system would act in the Ghanaian population.

Second, it is possible that in the Ghanaian population continuous pathogen exposure accelerates ageing of the innate immune system. Although this hypothesis is yet to be proven, there are several indications that chronic infections can modulate innate immune function, including findings that chronic helminthic infections reduce TLR2 expression[11] and our own observations that LPS-induced TNF and IL-10 responses were significantly enhanced in the Ghanaian compared to Dutch study populations. Interestingly, in patients with chronic Hepatitis C Virus (HCV) infections, the over-production of pro-inflammatory cytokines, in particular TNF has been shown to be likely due to a loss of TLR tolerance, a protective mechanism usually in place to limit inflammation[20]. In mice it has been shown that with age this tolerance process is attenuated[13]. Considering that TNF responses remained unchanged or increased with age in the Ghanaian population, we propose that if anything, our data do not support the hypothesis that a lifelong exposure to infections accelerates the age-related decline in innate immune responses, but on the contrary may drive pro-inflammatory responses.

Third, the age-related changes in cytokine production observed in the Ghanaian population may reflect the selective survival of individuals with immune responses that promote survival in adverse environmental conditions [21, 2, 22]. Previously, we have hypothesized that under adverse conditions people with enhanced pro-inflammatory immune responses may have greater survival potential than those with stronger anti-inflammatory responses [15]. This may explain why IL-10 but not TNF responses decline with age in Ghana.

Inflammation has been suggested to be one of the mechanisms underlying pathogenesis of several age-associated diseases such as cardiovascular disease [23]. Considering the emerging epidemic of chronic diseases in low-income countries [24], we therefore propose that this could well be explained by the here observed increase in pro-inflammatory versus decrease in anti-inflammatory responses in older age groups resulting from overstimulation or selective survival for this pro-inflammatory response pattern.

To our knowledge this is the first study looking at age-related changes in innate immune responses in populations aging under very diverse environmental conditions. A drawback of this study is that for the Dutch study population we did not have data in response to TLR ligands other than LPS. However, given the same patterns to different ligands in Ghana, we would expect no remarkable differences. In further research it should be tested whether the same trends will be observed in the Dutch population. Also age ranges were not completely alike including participants with a larger age-range in the Ghana population than in the Dutch cohort. Also there might be some uncertainty concerning the age of the participants in the highest age-category in the Ghanaian population, as these were perceived ages estimated based on face-value, life-history and mobility. We therefore grouped them as 60 plus. In addition, due to the cross-sectional nature of the study, we can not draw any final conclusions whether age-related changes in cytokine production is indeed an intrinsic phenomenon occurring over age, a result of selective survival and/or pathogen exposure.

In conclusion, in this study we demonstrated for the first time that in both in affluent and adverse environmental conditions there is an age-related decline in the IL-10 production capacity of the innate immune system. For TNF production, a similar decline was observed under affluent environmental conditions, but not under adverse environmental conditions. Lower production of cytokines seems an intrinsic phenomenon of the ageing process whereas chronic infections and/or selective survival may drive cytokine production towards pro-inflammatory responsiveness.



The Ghanaian part of our study was conducted in the remote Garu-Tempane district in the Upper-East region of Ghana. This densely populated agricultural area is inhabited by several tribes, mostly Bimoba and Kusasi. The Ghana Upper-East region, and especially the Garu-Tempane district, is underdeveloped, poor and mortality rates are high, with main causes of death including malaria, diarrhoea and poor nutrition [25, 26]. The vast majority of the people are farmers and the total agricultural process is done by hand labor. In 2001, we mapped the research area using a GPS system[27]. Since 2002, we have revisited the area annually to assess population changes. In 2006 a series of whole-blood assays were taken from a subset of the population. The Dutch study population consisted of subjects enrolled in a study on heritability of cytokine production in twins[28]. All people were born and raised in the Netherlands. A main difference between the general Ghanaian and Dutch population is mortality rates, that in the Netherlands results in a demographic composition with a median age is 39 years[29], whereas in the Garu-Tempane district this is 14 years. The Medical Ethical Committee of the Ghana Health Service, as well as the Medical Ethical Committee of the Leiden University Medical Center approved the studies. Witnessed observed informed consent was obtained from all Ghanaian participants and written informed consent was obtained from the Dutch participants.

Whole blood stimulation assay and cytokine production

In both of these populations pro-inflammatory and anti-inflammatory cytokine production capacity was assessed by stimulating ex vivo whole blood samples with lipopolysaccharide (LPS) as described elsewhere[30, 31]. All venous blood samples were drawn in the morning to exclude circadian variation, diluted twofold with RPMI-1640, and within two hours after collection were cultured with medium alone or with an optimal dose of 10 μg/ml E. coli-derived LPS (Sigma Aldrich, Zwijndrecht, the Netherlands) in 24-well plates at duplicate volumes of 1 ml for 24 hours in 37°C incubators. In the Ghanaian sample, additional ex vivo whole blood stimulations were performed with 100 μg/ml zymosan and with a combination of 10 ng/ml LPS and 100 μg/ml zymosan (Sigma-Aldrich, Schnelldorf, Germany). Procedures and conditions were kept similar in both settings, except that a CO2 incubator set at 5% was used in the Netherlands, and ambient CO2 levels were induced by a candle jar incubation system in Ghana[32]. In the candle jar incubation system culture plates are placed in an airtight container with a burning candle enclosed, and transferred as a whole to a 37°C incubator once the candle has faded. The compatibility of both systems was compared in a small experiment in which whole blood assays were performed for the same five staff members at both study sites: LPS-induced levels of TNF and IL-10 were comparable for the ambient CO2 conditions in Ghana and the incubator set 5% CO2 conditions in the Netherlands (data not shown). Supernatants were collected and kept at -20°C in Ghana until transported on dry ice to the Netherlands.

In the Netherlands all samples were stored at -80°C until cytokine levels were determined by ELISA. Cytokine ELISA for human TNF and IL-10 were performed according to manufacturers' guidelines (Central Laboratory of the Blood Transfusion Service, Amsterdam, the Netherlands), with detection limits of 4.0 pg/ml and 3.0 pg/ml respectively.

Statistical analysis

All cytokine levels were ln-transformed, since they were not normally distributed, and converted into z-scores ((individual level – mean level)/SD), which were used in all analyses. Associations between cytokine responses and age categories of 10 years as a continuous independent variable were assessed with sex adjusted linear regression. Calculations were performed with SPSS version 14.0 (SPSS Inc., Chicago, Illinois, USA).





Tumour Necrosis Factor




standard error.


  1. Kwiatkowski D, Hill AV, Sambou I, Twumasi P, Castracane J, Manogue KR, Cerami A, Brewster DR, Greenwood BM: TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990, 336: 1201-1204. 10.1016/0140-6736(90)92827-5.

    Article  CAS  PubMed  Google Scholar 

  2. Kurtzhals JA, Adabayeri V, Goka BQ, Akanmori BD, Oliver-Commey JO, Nkrumah FK, Behr C, Hviid L: Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet. 1998, 351: 1768-1772. 10.1016/S0140-6736(97)09439-7.

    Article  CAS  PubMed  Google Scholar 

  3. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, Kone A, Harley R, Plowe CV, Doumbo OK, Sztein MB: Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun. 2004, 72: 5630-5637. 10.1128/IAI.72.10.5630-5637.2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verweij CL, Boomsma DI, Vandenbroucke JP: Genetic influence on cytokine production and fatal meningococcal disease. Lancet. 1997, 349: 170-173. 10.1016/S0140-6736(96)06413-6.

    Article  CAS  PubMed  Google Scholar 

  5. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G: Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000, 908: 244-254.

    Article  CAS  PubMed  Google Scholar 

  6. Bruunsgaard H, Pedersen AN, Schroll M, Skinhoj P, Pedersen BK: Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans. Clin Exp Immunol. 1999, 118: 235-241. 10.1046/j.1365-2249.1999.01045.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Biggelaar van den AH, Huizinga TW, de Craen AJ, Gussekloo J, Heijmans BT, Frolich M, Westendorp RG: Impaired innate immunity predicts frailty in old age. The Leiden 85-plus study. Exp Gerontol. 2004, 39: 1407-1414. 10.1016/j.exger.2004.06.009.

    Article  PubMed  Google Scholar 

  8. Romagnani S: Coming back to a missing immune deviation as the main explanatory mechanism for the hygiene hypothesis. J Allergy Clin Immunol. 2007, 119: 1511-1513. 10.1016/j.jaci.2007.04.005.

    Article  PubMed  Google Scholar 

  9. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A: Cytomegalovirus and human immunosenescence. Rev Med Virol. 2009, 19: 47-56. 10.1002/rmv.598.

    Article  CAS  PubMed  Google Scholar 

  10. Gardner EM, Murasko DM: Age-related changes in Type 1 and Type 2 cytokine production in humans. Biogerontology. 2002, 3: 271-290. 10.1023/A:1020151401826.

    Article  CAS  PubMed  Google Scholar 

  11. Hartgers FC, Obeng BB, Kruize YC, Duijvestein M, de Breij A, Amoah A, Larbi IA, van Ree R, Wilson MD, Rodrigues LC, Boakye DA, Yazdanbakhsh M: Lower Expression of TLR2 and SOCS-3 Is Associated with Schistosoma haematobium Infection and with Lower Risk for Allergic Reactivity in Children Living in a Rural Area in Ghana. PLoS Negl Trop Dis. 2008, 2 (4): e227-10.1371/journal.pntd.0000227.

    Article  PubMed Central  PubMed  Google Scholar 

  12. van der Kleij KD, van den Biggelaar AH, Kruize YC, Retra K, Fillie Y, Schmitz M, Kremsner PG, Tielens AG, Yazdanbakhsh M: Responses to Toll-like receptor ligands in children living in areas where schistosome infections are endemic. J Infect Dis. 2004, 189: 1044-1051. 10.1086/382089.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Howell EA, Lagoo AS, Kuchibhatla M, Pan H, Cohen HJ, Lagoo SA: Differential gene expression of interleukin-1 receptor associated kinase-1 and interleukin-1 receptor associated kinase-M in peripheral blood mononuclear cells of young and aged rats following preconditioning with endotoxin. Shock. 2009, 31: 55-63. 10.1097/SHK.0b013e3181778ab2.

    Article  PubMed  Google Scholar 

  14. Paula C, Motta A, Schmitz C, Nunes CP, Souza AP, Bonorino C: Alterations in dendritic cell function in aged mice: potential implications for immunotherapy design. Biogerontology. 2009, 10: 13-25. 10.1007/s10522-008-9150-x.

    Article  CAS  PubMed  Google Scholar 

  15. Van Bodegom D, May L, Meij HJ, Westendorp RG: Regulation of human life histories: the role of the inflammatory host response. Ann N Y Acad Sci. 2007, 1100: 84-97. 10.1196/annals.1395.007.

    Article  CAS  PubMed  Google Scholar 

  16. van Duin D, Shaw AC: Toll-like receptors in older adults. J Am Geriatr Soc. 2007, 55: 1438-1444. 10.1111/j.1532-5415.2007.01300.x.

    Article  PubMed  Google Scholar 

  17. Lord JM, Butcher S, Killampali V, Lascelles D, Salmon M: Neutrophil ageing and immunesenescence. Mech Ageing Dev. 2001, 122: 1521-1535. 10.1016/S0047-6374(01)00285-8.

    Article  CAS  PubMed  Google Scholar 

  18. Stout RD, Suttles J: Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev. 2005, 205: 60-71. 10.1111/j.0105-2896.2005.00260.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gomez CR, Nomellini V, Faunce DE, Kovacs EJ: Innate immunity and aging. Exp Gerontol. 2008, 43: 718-728. 10.1016/j.exger.2008.05.016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dolganiuc A, Norkina O, Kodys K, Catalano D, Bakis G, Marshall C, Mandrekar P, Szabo G: Viral and host factors induce macrophage activation and loss of toll-like receptor tolerance in chronic HCV infection. Gastroenterology. 2007, 133: 1627-1636. 10.1053/j.gastro.2007.08.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cooke GS, Hill AV: Genetics of susceptibility to human infectious disease. Nat Rev Genet. 2001, 2: 967-977. 10.1038/35103577.

    Article  CAS  PubMed  Google Scholar 

  22. Le Souef PN, Goldblatt J, Lynch NR: Evolutionary adaptation of inflammatory immune responses in human beings. Lancet. 2000, 356: 242-244. 10.1016/S0140-6736(00)02491-0.

    Article  CAS  PubMed  Google Scholar 

  23. Libby P: Inflammation in atherosclerosis. Nature. 2002, 420: 868-874. 10.1038/nature01323.

    Article  CAS  PubMed  Google Scholar 

  24. Strong K, Mathers C, Leeder S, Beaglehole R: Preventing chronic diseases: how many lives can we save?. Lancet. 2005, 366: 1578-1582. 10.1016/S0140-6736(05)67341-2.

    Article  PubMed  Google Scholar 

  25. Meij JJ, de Craen AJ, Agana J, Plug D, Westendorp RG: Low-cost interventions accelerate epidemiological transition in Upper East Ghana. Trans R Soc Trop Med Hyg. 2009, 103: 173-178. 10.1016/j.trstmh.2008.09.015.

    Article  CAS  PubMed  Google Scholar 

  26. Van Bodegom D, May L, Kuningas M, Kaptijn R, Thomese F, Meij HJ, Amankwa J, Westendorp RG: Socio-economic status by rapid appraisal is highly correlated with mortality risks in rural Africa. Trans R Soc Trop Med Hyg. 2009,

    Google Scholar 

  27. Ziem JB, Spannbrucker N, Magnussen P, Olsen A, mon-Kotey DN, Frenzel K, Nang-Beifubah A, Westendorp RG, Polderman AM: Oesophagostomum bifurcum-induced nodular pathology in a highly endemic area of Northern Ghana. Trans R Soc Trop Med Hyg. 2005, 99: 417-422. 10.1016/j.trstmh.2004.07.008.

    Article  CAS  PubMed  Google Scholar 

  28. de Craen AJ, Posthuma D, Remarque EJ, Biggelaar van den AH, Westendorp RG, Boomsma DI: Heritability estimates of innate immunity: an extended twin study. Genes Immun. 2005, 6: 167-170. 10.1038/sj.gene.6364162.

    Article  CAS  PubMed  Google Scholar 

  29. Dutch statistical Database. 2008,

  30. Linden van der MW, Huizinga TW, Stoeken DJ, Sturk A, Westendorp RG: Determination of tumour necrosis factor-alpha and interleukin-10 production in a whole blood stimulation system: assessment of laboratory error and individual variation. J Immunol Methods. 1998, 218: 63-71. 10.1016/S0022-1759(98)00108-2.

    Article  PubMed  Google Scholar 

  31. May L, van Bogedom D, Kuningas M, Meij JJ, de Craen AJ, Frölich M, Westendorp RG: Performance of the whole-blood stimulation assay for assessing innate immune activation under field conditions. Cytokine. 2009, 45: 184-189. 10.1016/j.cyto.2008.12.010.

    Article  CAS  PubMed  Google Scholar 

  32. Westenbrink BD, Stienstra Y, Huitema MG, Thompson WA, Klutse EO, Ampadu EO, Boezen HM, Limburg PC, Werf van der TS: Cytokine responses to stimulation of whole blood from patients with Buruli ulcer disease in Ghana. Clin Diagn Lab Immunol. 2005, 12: 125-129.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references


This research was supported by the Netherlands Foundation for the advancements of Tropical Research (grant number WOTRO 93-467), the Netherlands Organization for Scientific Research (NWO 051-14-050), the EU funded Network of Excellence LifeSpan (FP6 036894), the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research (NWO) (050-60810) and the Stichting Dioraphte. We want to thank all people who were part of the research team. Furthermore we want to thank Margo van Schie-Troost and Marja Kersbergen-van Oostrom for their work on the cytokine assays.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rudi GJ Westendorp.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LM, AvdB, JM, AdC, JA, MF and RW designed the study. LM, DvB, JM performed fieldwork and whole blood assays in Ghana. AdC collected data from the Dutch Twin study. MF carried out ELISA assays. LM, AvdB and MK analyzed the data. LM, AvdB, MK, DvB and RW wrote the paper. All authors approved the final version of the manuscript.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

May, L., van den Biggelaar, A.H., van Bodegom, D. et al. Adverse environmental conditions influence age-related innate immune responsiveness. Immun Ageing 6, 7 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: