Eurostat. Population structure and aging. (2021) Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing. Accessed 18 July 2021.
Gavazzi G, Krause K. Ageing and infection. Lancet. 2002;2:659–66. https://doi.org/10.1016/S1473-3099(02)00437-1.
Article
Google Scholar
Janssens JP. Pneumonia in the elderly (geriatric) population. Curr Opin Pulm Med. 2005;11:226–30.
PubMed
Google Scholar
Herpes Zoster and Functional Decline Consortium. Functional decline and herpes zoster in older people: an interplay of multiple factors. Aging Clin Exp Res. 2015;27:757–65. https://doi.org/10.1007/s40520-015-0450-0.
Article
Google Scholar
Macias AE, McElhaney JE, Chaves SS, Nealon J, Nunes MC, Samson SI, et al. The disease burden of influenza beyond respiratory illness. Vaccine. 2021;39:A6–A14. https://doi.org/10.1016/j.vaccine.2020.09.048.
Article
CAS
PubMed
Google Scholar
European Centre for Disease Prevention and Control. Factsheet about seasonal influenza. (2021)
Google Scholar
Dugan HL, Henry C, Wilson PC. Aging and influenza vaccine-induced immunity. Cell Immunol. 2020;348:103998. https://doi.org/10.1016/j.cellimm.2019.103998.
Article
CAS
PubMed
Google Scholar
Tisa V, Barberis I, Faccio V, Paganino C, Trucchi C, Martini M, et al. Quadrivalent influenza vaccine: a new opportunity to reduce the influenza burden. J Prev Med Hyg. 2016;57:E28–33.
CAS
PubMed
PubMed Central
Google Scholar
Kon TC, Onu A, Berbecila L, Lupulescu E, Ghiorgisor A, Kersten GF, et al. Influenza vaccine manufacturing: Effect of inactivation, splitting and site of manufacturing. Comparison of influenza vaccine production processes. PLoS One. 2016;11:e0150700. https://doi.org/10.1371/journal.pone.0150700.
Article
CAS
PubMed
Google Scholar
Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine. 2006;24:1159–69. https://doi.org/10.1016/j.vaccine.2005.08.105.
Article
CAS
PubMed
Google Scholar
Myśliwska J, Trzonkowski P, Szmit E, Brydak LB, Machała M, Myśliwski A. Immunomodulating effect of influenza vaccination in the elderly differing in health status. Exp Gerontol. 2004;39:1447–58. https://doi.org/10.1016/j.exger.2004.08.005.
Article
PubMed
Google Scholar
Yao X, Hamilton RG, Weng NP, Xue QL, Bream JH, Li H, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29:5015–21. https://doi.org/10.1016/j.vaccine.2011.04.077.
Article
PubMed
PubMed Central
Google Scholar
Carlock MA, Ingram JG, Clutter EF, Cecil NC, Ramgopal M, Zimmerman RK, et al. Impact of age and pre-existing immunity on the induction of human antibody responses against influenza B viruses. Hum Vaccines Immunother. 2019;15:2030–43. https://doi.org/10.1080/21645515.2019.1642056.
Article
Google Scholar
Kissling E, Nunes B, Robertson C, Valenciano M, Reuss A, Larrauri A, et al. I-MOVE multicentre case–control study 2010/11 to 2014/15: Is there within-season waning of influenza type/subtype vaccine effectiveness with increasing time since vaccination? Eurosurveillance. 2016;21:30201. https://doi.org/10.2807/1560-7917.ES.2016.21.16.30201.
Article
Google Scholar
McElhaney JE, Andrew MK, McNeil SA. Estimating influenza vaccine effectiveness: Evolution of methods to better understand effects of confounding in older adults. Vaccine. 2017;35:6269–74. https://doi.org/10.1016/j.vaccine.2017.09.084.
Article
PubMed
Google Scholar
Ward BJ, Pillet S, Charland N, Trepanier S, Couillard J, Landry N. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines? Hum Vaccines Immunother. 2018;14:647–56. https://doi.org/10.1080/21645515.2017.1413518.
Article
Google Scholar
Frasca D, Diaz A, Romero M, Blomberg BB. The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine. 2016;34:2834–40. https://doi.org/10.1016/j.vaccine.2016.04.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahid Z, Kleppinger A, Gentleman B, Falsey AR, McElhaney JE. Clinical and immunologic predictors of influenza illness among vaccinated older adults. Vaccine. 2010;28:6145–51. https://doi.org/10.1016/j.vaccine.2010.07.036.
Article
PubMed
PubMed Central
Google Scholar
Merani S, Kuchel GA, Kleppinger A, McElhaney JE. Influenza vaccine-mediated protection in older adults: Impact of influenza infection, cytomegalovirus serostatus and vaccine dosage. Exp Gerontol. 2018;107:116–25. https://doi.org/10.1016/j.exger.2017.09.015.
Article
CAS
PubMed
Google Scholar
McElhaney JE, Verschoor CP, Andrew MK, Haynes L, Kuchel GA, Pawelec G. The immune response to influenza in older humans: Beyond immune senescence. Immun Ageing. 2020;17:1–10. https://doi.org/10.1186/s12979-020-00181-1.
Article
Google Scholar
Demicheli V, Jefferson T, Ferroni E, Rivetti A, Di Pietrantonj C. Vaccines for preventing influenza in healthy adults. Cochrane Database Syst Rev. 2018;2:CD001269. https://doi.org/10.1002/14651858.CD001269.pub6.
Article
PubMed
Google Scholar
Beran J, Vesikari T, Wertzova V, Karvonen A, Honegr K, Lindblad N, et al. Efficacy of Inactivated Split-Virus Influenza Vaccine against Culture-Confirmed Influenza in Healthy Adults: A Prospective, Randomized, Placebo-Controlled Trial. J Infect Dis. 2009;200:1861–9. https://doi.org/10.1086/648406.
Article
CAS
PubMed
Google Scholar
Govaert TME, Thijs CTMCN, Masurel N, Sprenger MJW, Dinant GJ, Knottnerus JA. The Efficacy of Influenza Vaccination in Elderly Individuals A Randomized Double-blind Placebo-Controlled Trial From the Departments of General Practice. JAMA. 1994;272:1661–5 Available at: http://jama.jamanetwork.com/.
Article
CAS
PubMed
Google Scholar
Kwong JC, Campitelli MA, Gubbay JB, Peci A, Winter AL, Olsha R, et al. Vaccine effectiveness against laboratory-confirmed influenza hospitalizations among elderly adults during the 2010-2011 season. Clin Infect Dis. 2013;57:820–7. https://doi.org/10.1093/cid/cit404.
Article
PubMed
PubMed Central
Google Scholar
DiazGranados CA, Dunning AJ, Kimmel M, Kirby D, Treanor J, Collins A, et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N Engl J Med. 2014;371:635–45. https://doi.org/10.1056/NEJMoa1315727.
Article
PubMed
Google Scholar
Cowling BJ, Perera RAPM, Valkenburg SA, Leung NHL, Iuliano AD, Tam YH, et al. Comparative Immunogenicity of Several Enhanced Influenza Vaccine Options for Older Adults: A Randomized, Controlled Trial. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz1034.
Wilkinson K, Wei Y, Szwajcer A, Rabbani R, Zarychanski R, Abou-Setta AM, et al. Efficacy and safety of high-dose influenza vaccine in elderly adults: A systematic review and meta-analysis. Vaccine. 2017;35:2775–80. https://doi.org/10.1016/j.vaccine.2017.03.092.
Article
CAS
PubMed
Google Scholar
Lee JKH, Lam GKL, Shin T, Kim J, Krishnan A, Greenberg DP, et al. Efficacy and effectiveness of high-dose versus standard-dose influenza vaccination for older adults: a systematic review and meta-analysis. Expert Rev Vaccines. 2018;17:435–43. https://doi.org/10.1080/14760584.2018.1471989.
Article
CAS
PubMed
Google Scholar
Lofano G, Mancini F, Salvatore G, Cantisani R, Monaci E, Carrisi C, et al. Oil-in-Water Emulsion MF59 Increases Germinal Center B Cell Differentiation and Persistence in Response to Vaccination. J Immunol. 2015;195:1617–27. https://doi.org/10.4049/jimmunol.1402604.
Article
CAS
PubMed
Google Scholar
Weinberger B. Adjuvant strategies to improve vaccination of the elderly population. Curr Opin Pharmacol. 2018;41:34–41. https://doi.org/10.1016/j.coph.2018.03.014.
Article
CAS
PubMed
Google Scholar
Camilloni B, Basileo M, Valente S, Nunzi E, Iorio AM. Immunogenicity of intramuscular MF59- Adjuvanted and intradermal administered influenza enhanced vaccines in subjects aged over 60: A literature review. Hum Vaccines Immunother. 2015;11:553–63. https://doi.org/10.1080/21645515.2015.1011562.
Article
Google Scholar
Black S. Safety and effectiveness of MF-59 adjuvanted influenza vaccines in children and adults. Vaccine. 2015;33:B3–5. https://doi.org/10.1016/j.vaccine.2014.11.062.
Article
CAS
PubMed
Google Scholar
Galli G, Medini D, Borgogni E, Zedda L, Bardelli M, Malzone C, et al. Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc Natl Acad Sci U S A. 2009;106:3877–82. https://doi.org/10.1073/pnas.0813390106.
Article
PubMed
PubMed Central
Google Scholar
Orsi A, Ansaldi F, De Florentiis D, Ceravolo A, Parodi V, Canepa P, et al. Cross-protection against drifted influenza viruses: Options offered by adjuvanted and intradermal vaccines. Hum Vaccines Immunother. 2013;9:582–90. https://doi.org/10.4161/hv.23239.
Article
CAS
Google Scholar
Ansaldi F, Bacilieri S, Durando P, Sticchi L, Valle L, Montomoli E, et al. Cross-protection by MF59TM-adjuvanted influenza vaccine: Neutralizing and haemagglutination-inhibiting antibody activity against A(H3N2) drifted influenza viruses. Vaccine. 2008;26:1525–9. https://doi.org/10.1016/j.vaccine.2008.01.019.
Article
CAS
PubMed
Google Scholar
Domnich A, Arata L, Amicizia D, Puig-Barberà J, Gasparini R, Panatto D. Effectiveness of MF59-adjuvanted seasonal influenza vaccine in the elderly: A systematic review and meta-analysis. Vaccine. 2017;35:513–20. https://doi.org/10.1016/j.vaccine.2016.12.011.
Article
CAS
PubMed
Google Scholar
van Aalst R, Gravenstein S, Mor V, Mahmud SM, Wilschut J, Postma M, et al. Comparative effectiveness of high dose versus adjuvanted influenza vaccine: A retrospective cohort study. Vaccine. 2020;38:372–9. https://doi.org/10.1016/j.vaccine.2019.09.105.
Article
CAS
PubMed
Google Scholar
Boikos C, Fischer L, O’Brien D, Vasey J, Sylvester GC, Mansi JA. Relative Effectiveness of Adjuvanted Trivalent Inactivated Influenza Vaccine Versus Egg-Derived Quadrivalent Inactivated Influenza Vaccines and High-Dose Trivalent Influenza Vaccine in Preventing Influenza-Related Medical Encounters in US Adults ≥65 Years. Clin Infect Dis. 2021;73:e692–8. https://doi.org/10.1093/cid/ciab152.
Article
PubMed
PubMed Central
Google Scholar
Sanchez L, Matsuoka O, Inoue S, Inoue T, Meng Y, Nakama T, et al. Immunogenicity and safety of high-dose quadrivalent influenza vaccine in Japanese adults ≥65 years of age: a randomized controlled clinical trial. Hum Vaccines Immunother. 2020;16:858–66. https://doi.org/10.1080/21645515.2019.1677437.
Article
CAS
Google Scholar
Chang LJ, Meng Y, Janosczyk H, Landolfi V, Talbot HK. Safety and immunogenicity of high-dose quadrivalent influenza vaccine in adults ≥65 years of age: A phase 3 randomized clinical trial. Vaccine. 2019;37:5825–34. https://doi.org/10.1016/j.vaccine.2019.08.016.
Article
CAS
PubMed
Google Scholar
Essink B, Fierro C, Rosen J, Figueroa AL, Zhang B, Verhoeven C, et al. Immunogenicity and safety of MF59-adjuvanted quadrivalent influenza vaccine versus standard and alternate B strain MF59-adjuvanted trivalent influenza vaccines in older adults. Vaccine. 2020;38:242–50. https://doi.org/10.1016/j.vaccine.2019.10.021.
Article
CAS
PubMed
Google Scholar
Michaelis K, Scholz S, Buda S, Garbe E, Harder T, Ledig T, et al. Beschluss und Wissenschaftliche Begründung der Ständigen Impfkommission für die Aktualisierung der Influenza-Impfempfehlung für Personen im Alter von ≥60 Jahren. Epid Bull. 2021;1:3–25.
Google Scholar
Joint Committee on Vaccination and Immunisation. Advice on influenza vaccines for 2020/2021. (2019) Available at: https://app.box.com/s/t5ockz9bb6xw6t2mrrzb144njplimfo0/file/529004924372. Accessed 23 May 2021.
Joint Committee on Vaccination and Immunisation. Advice on influenza vaccines for 2021/2022. (2020)
Grohskopf LA, Alyanak E, Broder KR, Blanton LH, Fry AM, Jernigan DB, et al. Prevention and control of seasonal influenza with vaccines: Recommendations of the advisory committee on immunization practices-United States, 2020-21 influenza season. MMWR Recomm Reports. 2020;69. https://doi.org/10.15585/MMWR.RR6908A1.
Nguyen-Contant P, Sangster MY, Topham DJ. Squalene-based influenza vaccine adjuvants and their impact on the hemagglutinin-specific b cell response. Pathogens. 2021;10. https://doi.org/10.3390/pathogens10030355.
Nicholson KG, Abrams KR, Batham S, Clark TW, Hoschler K, Shen Lim W, et al. Immunogenicity and safety of a two-dose schedule of whole-virion and AS03 A-adjuvanted 2009 infl uenza A (H1N1) vaccines: a randomised, multicentre, age-stratifi ed, head-to-head trial. Lancet Infect Dis. 2011;11:91–101. https://doi.org/10.1016/S1473.
Article
CAS
PubMed
Google Scholar
Yang WH, Dionne M, Kyle M, Aggarwal N, Li P, Madariaga M, et al. Long-term immunogenicity of an AS03-adjuvanted influenza A(H1N1)pdm09 vaccine in young and elderly adults: An observer-blind, randomized trial. Vaccine. 2013;31:4389–97. https://doi.org/10.1016/j.vaccine.2013.07.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
McElhaney JE, Beran J, Devaster J-M, Esen M, Launay O, Leroux-Roels G, et al. AS03-adjuvanted versus non-adjuvanted inactivated trivalent influenza vaccine against seasonal influenza in elderly people: a phase 3 randomised trial. Lancet Infect Dis. 2013;13:485–96. https://doi.org/10.1016/S1473-3099(13)70046-X.
Article
CAS
PubMed
Google Scholar
Tregoning JS, Russell RF, Kinnear E. Adjuvanted influenza vaccines. Hum Vaccines Immunother. 2018;14:550–64. https://doi.org/10.1080/21645515.2017.1415684.
Article
Google Scholar
Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012;30:1210–6. https://doi.org/10.1038/nbt.2436.
Article
CAS
PubMed
Google Scholar
Zimmerman RK, Nowalk MP, Chung J, Jackson ML, Jackson LA, Petrie JG, et al. 2014-2015 Influenza Vaccine Effectiveness in the United States by Vaccine Type. Clin Infect Dis. 2016;63:1564–73. https://doi.org/10.1093/cid/ciw635.
Article
PubMed
PubMed Central
Google Scholar
Xie H, Wan XF, Ye Z, Plant EP, Zhao Y, Xu Y, et al. H3N2 Mismatch of 2014-15 Northern Hemisphere Influenza Vaccines and Head-to-head Comparison between Human and Ferret Antisera derived Antigenic Maps. Sci Rep. 2015;5:1–10. https://doi.org/10.1038/srep15279.
Article
CAS
Google Scholar
Belongia EA, Kieke BA, Donahue JG, Greenlee RT, Balish A, Foust A, et al. Effectiveness of inactivated influenza vaccines varied substantially with antigenic match from the 2004-2005 season to the 2006-2007 season. J Infect Dis. 2009;199:159–67. https://doi.org/10.1086/595861.
Article
PubMed
Google Scholar
Li Z, Zhao Y, Li Y, Chen X. Adjuvantation of influenza vaccines to induce cross-protective immunity. Vaccines. 2021;9:1–22. https://doi.org/10.3390/vaccines9020075.
Article
CAS
Google Scholar
Schmidt A, Lapuente D. T cell immunity against influenza: The long way from animal models towards a real-life universal flu vaccine. Viruses. 2021;13. https://doi.org/10.3390/v13020199.
Estrada LD, Schultz-Cherry S. Development of a universal influenza vaccine. J Immunol. 2019;202:392–8. https://doi.org/10.4049/jimmunol.1801054.
Article
CAS
PubMed
Google Scholar
Nachbagauer R, Palese P. Is a Universal Influenza Virus Vaccine Possible? Annu Rev Med. 2020;71:315–27. https://doi.org/10.1146/annurev-med-120617-041310.
Article
CAS
PubMed
Google Scholar
Wei C-J, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov. 2020;19:239–52. https://doi.org/10.1038/s41573-019-0056-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henrichsen J. Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol. 1995;33:2759–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim L, McGee L, Tomczyk S, Beall B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: A United States perspective. Clin Microbiol Rev. 2016;29:525–52. https://doi.org/10.1128/CMR.00058-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drijkoningen JJC, Rohde GGU. Pneumococcal infection in adults: Burden of disease. Clin Microbiol Infect. 2014;20:45–51. https://doi.org/10.1111/1469-0691.12461.
Article
PubMed
Google Scholar
Klein EY, Monteforte B, Gupta A, Jiang W, May L, Hsieh YH, et al. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. Influenza Other Respi Viruses. 2016;10:394–403. https://doi.org/10.1111/irv.12398.
Article
Google Scholar
Kelly DF, Snape MD, Cutterbuck EA, Green S, Snowden C, Diggle L, et al. CRM197-conjugated serogroup C meningococcal capsular polysaccharide, but not the native polysaccharide, induces persistent antigen-specific memory B cells. Blood. 2006;108:2642–7. https://doi.org/10.1182/blood-2006-01-009282.
Article
CAS
PubMed
Google Scholar
Pollard AJ, Perrett KP, Beverley PC. Maintaining protection agaisnt invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev Immunol. 2009;426:422–6 Available at: www.nature.com/reviews/immunol.
Google Scholar
Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH, Bennett NM, et al. Sustained Reductions in Invasive Pneumococcal Disease in the Era of Conjugate Vaccine. J Infect Dis. 2010;201:32–41. https://doi.org/10.1086/648593.
Article
PubMed
Google Scholar
Henckaerts I, Goldblatt D, Ashton L, Poolman J. Critical differences between pneumococcal polysaccharide enzyme-linked immunosorbent assays with and without 22F inhibition at low antibody concentrations in pediatric sera. Clin Vaccine Immunol. 2006;13:356–60. https://doi.org/10.1128/CVI.13.3.356-360.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song JY, Moseley MA, Burton RL, Nahm MH. Pneumococcal vaccine and opsonic pneumococcal antibody. J Infect Chemother. 2013;19:412–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacIntyre CR, Ridda I, Trent MJ, McIntyre P. Persistence of immunity to conjugate and polysaccharide pneumococcal vaccines in frail, hospitalised older adults in long-term follow up. Vaccine. 2019;37:5016–24. https://doi.org/10.1016/j.vaccine.2019.07.005.
Article
CAS
PubMed
Google Scholar
Park S, Nahm MH. Older adults have a low capacity to opsonize pneumococci due to low igm antibody response to pneumococcal vaccinations. Infect Immun. 2011;79:314–20. https://doi.org/10.1128/IAI.00768-10.
Article
CAS
PubMed
Google Scholar
Adler H, Ferreira DM, Gordon SB, Rylance J. Pneumococcal Capsular Polysaccharide Immunity in the Elderly. Clin Vaccine Immunol. 2017;24:1–18.
Article
Google Scholar
Lee H, Nahm MH, Burton R, Kim KH. Immune response in infants to the heptavalent pneumococcal conjugate vaccine against vaccine-related serotypes 6A and 19A. Clin Vaccine Immunol. 2009;16:376–81. https://doi.org/10.1128/CVI.00344-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oishi T, Ishiwada N, Matsubara K, Nishi J, Chang B, Tamura K, et al. Low opsonic activity to the infecting serotype in pediatric patients with invasive pneumococcal disease. Vaccine. 2013;31:845–9. https://doi.org/10.1016/j.vaccine.2012.11.010.
Article
CAS
PubMed
Google Scholar
Wu YCB, Kipling D, Dunn-Walters DK. Age-related changes in human peripheral blood IGH repertoire following vaccination. Front Immunol. 2012;3:1–12. https://doi.org/10.3389/fimmu.2012.00193.
Article
Google Scholar
Kolibab K, Smithson SL, Shriner AK, Khuder S, Romero-Steiner S, Carlone GM, et al. Immune response to pneumococcal polysaccharides 4 and 14 in elderly and young adults. I Antibody concentrations, avidity and functional activity. Immun Ageing. 2005;2:1–9. https://doi.org/10.1186/1742-4933-2-10.
Article
CAS
Google Scholar
Romero-Steiner S, Musher DM, Cetron MS, Pais LB, Groover JE, Carlone GM. Reduction in Functional Antibody Activity Against Streptococcus pneumoniae in Vaccinated Elderly Individuals Highly Correlates with Decreased IgG Antibody Avidity. Clin Infect Dis. 1999;29:281–8. https://doi.org/10.1086/520200.
Article
CAS
PubMed
Google Scholar
de Roux A, Schmöele-Thoma B, Siber GR, Hackell JG, Kuhnke A, Ahlers N, et al. Comparison of Pneumococcal Conjugate Polysaccharide and Free Polysaccharide Vaccines in Elderly Adults: Conjugate Vaccine Elicits Improved Antibacterial Immune Responses and Immunological Memory. Clin Infect Dis. 2008;46:1015–23. https://doi.org/10.1086/529142.
Article
PubMed
Google Scholar
Ridda I, MacIntyre CR, Lindley R, Gao Z, Sullivan JS, Yuan FF, et al. Immunological responses to pneumococcal vaccine in frail older people. Vaccine. 2009;27:1628–36. https://doi.org/10.1016/j.vaccine.2008.11.098.
Article
CAS
PubMed
Google Scholar
MacIntyre CR, Ridda I, Gao Z, Moa AM, McIntyre PB, Sullivan JS, et al. A randomized clinical trial of the immunogenicity of 7-valent pneumococcal conjugate vaccine compared to 23-valent polysaccharide vaccine in frail, hospitalized elderly. PLoS One. 2014;9:e94578. https://doi.org/10.1371/journal.pone.0094578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miernyk KM, Butler JC, Bulkow LR, Singleton RJ, Hennessy TW, Dentinger CM, et al. Immunogenicity and Reactogenicity of Pneumococcal Polysaccharide and Conjugate Vaccines in Alaska Native Adults 55–70 Years of Age. Clin Infect Dis. 2009;49:241–8. https://doi.org/10.1086/599824.
Article
CAS
PubMed
Google Scholar
Vadlamudi NK, Parhar K, Altre Malana KL, Kang A, Marra F. Immunogenicity and safety of the 13-valent pneumococcal conjugate vaccine compared to 23-valent pneumococcal polysaccharide in immunocompetent adults: A systematic review and meta-analysis. Vaccine. 2019;37:1021–9. https://doi.org/10.1016/j.vaccine.2019.01.014.
Article
CAS
PubMed
Google Scholar
Marra F, Vadlamudi NK. Efficacy and safety of the pneumococcal conjugate-13 valent vaccine in adults. Aging Dis. 2019;10:404–18. https://doi.org/10.14336/AD.2018.0512.
Article
PubMed
PubMed Central
Google Scholar
Falkenhorst G, Remschmidt C, Harder T, Hummers-Pradier E, Wichmann O, Bogdan C. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine (ppv23) against pneumococcal disease in the elderly: Systematic review and meta-analysis. PLoS One. 2017;12:1–18. https://doi.org/10.1371/journal.pone.0169368.
Article
CAS
Google Scholar
Diao WQ, Shen N, Yu PX, Liu BB, He B. Efficacy of 23-valent pneumococcal polysaccharide vaccine in preventing community-acquired pneumonia among immunocompetent adults: A systematic review and meta-analysis of randomized trials. Vaccine. 2016;34:1496–503. https://doi.org/10.1016/j.vaccine.2016.02.023.
Article
CAS
PubMed
Google Scholar
Kraicer-Melamed H, O’Donnell S, Quach C. The effectiveness of pneumococcal polysaccharide vaccine 23 (PPV23) in the general population of 50 years of age and older: A systematic review and meta-analysis. Vaccine. 2016;34:1540–50. https://doi.org/10.1016/j.vaccine.2016.06.045.
Article
CAS
PubMed
Google Scholar
Schiffner-Rohe J, Witt A, Hemmerling J, Von Eiff C, Leverkus FW. Efficacy of PPV23 in preventing pneumococcal pneumonia in adults at increased risk - A systematic review and meta-analysis. PLoS One. 2016;11:1–21. https://doi.org/10.1371/journal.pone.0146338.
Article
CAS
Google Scholar
Moberley S, Holden J, Tatham T, Andrews R. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev. 2013;1:CD000422.
Google Scholar
Bonten MJM, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S, et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med. 2015;372:1114–25. https://doi.org/10.1056/NEJMoa1408544.
Article
CAS
PubMed
Google Scholar
Richmond P, Kaczmarski E, Borrow R, Findlow J, Clark S, McCann R, et al. Meningococcal C Polysaccharide Vaccine Induces Immunologic Hyporesponsiveness in Adults That Is Overcome by Meningococcal C Conjugate Vaccine. J Infect Dis. 2000;181:761–4. https://doi.org/10.1086/315284.
Article
CAS
PubMed
Google Scholar
Matanock A, Lee G, Gierke R, Kobayashi M, Leidner A, Pilishvili T. Use of 13-Valent Pneumococcal Conjugate Vaccine and 23-Valent Pneumococcal Polysaccharide Vaccine Among Adults Aged ≥65 Years: Updated Recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep. 2019;68:1069–75. https://doi.org/10.15585/mmwr.mm6846a5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaplan A, Aresnault P, Aw B, Brown V, Fox G, Grossman R, et al. Vaccine strategies for prevention of community-acquired pneumonia in Canada. Candadian Fam Physician. 2019;65:625–33 Available at: https://pubmed.ncbi.nlm.nih.gov/31515311/.
Google Scholar
Vila-Córcoles A, Ochoa-Gondar O, de Diego C, Satué E, Vila-Rovira A, Aragón M. Pneumococcal vaccination coverages by age, sex and specific underlying risk conditions among middle-aged and older adults in Catalonia, Spain, 2017. Eurosurveillance. 2019;24:1–9. https://doi.org/10.2807/1560-7917.ES.2019.24.29.1800446.
Article
Google Scholar
Norris T, Vahratian A, Cohen RA. Vaccination Coverage Among Adults Aged 65 and Over: United States, 2015. NCHS Data Brief (2017)1–8.
Black CL, Williams WW, Warnock R, Pilishvili T, Kim D, Kelman JA. Pneumococcal vaccination among medicare beneficiaries occurring after the advisory committee on immunization practices recommendation for routine use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine for adults. Morb Mortal Wkly Rep. 2017;66:728–33. https://doi.org/10.15585/mmwr.mm6627a4.
Article
Google Scholar
Stacey HL, Rosen J, Peterson JT, Williams-Diaz A, Gakhar V, Sterling TM, et al. Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV-15) compared to PCV-13 in healthy older adults. Hum Vaccines Immunother. 2019;15:530–9. https://doi.org/10.1080/21645515.2018.1532249.
Article
Google Scholar
Hurley D, Griffin C, Young M, Scott DA, Pride MW, Scully IL, et al. Safety, Tolerability, and Immunogenicity of a 20-Valent Pneumococcal Conjugate Vaccine (PCV20) in Adults 60 to 64 Years of Age. Clin Infect Dis. 2020:1–9. https://doi.org/10.1093/cid/ciaa1045.
Merck. Merck announces US FDA approval of VaxneuvanceTM (pneumococcal 15-valent conjugate vaccine) for the prevention of invasive pneumococcal disease in adults 18 years and older caused by 15 serotypes. (2021) Available at: https://www.businesswire.com/news/home/20210716005480/en/Merck-Announces-U.S.-FDA-Approval-of-VAXNEUVANCETM-Pneumococcal-15-valent-Conjugate-Vaccine-for-the-Prevention-of-Invasive-Pneumococcal-Disease-in-Adults-18-Years-and-Older-Caused-by-15-Serotypes. Accessed 29 July 2021.
Flebbe LM, Braley-Mullen H. Immunopotentiating effects of the adjuvants SGP and Quil A. Cell Immunol. 1986;99:119–27. https://doi.org/10.1016/0008-8749(86)90221-2.
Article
CAS
PubMed
Google Scholar
Wuorimaa T, Dagan R, Eskola J, Janco J, Åhman H, Leroy O, et al. Tolerability and immunogenicity of an eleven-valent pneumococcal conjugate vaccine in healthy toddlers. Pediatr Infect Dis J. 2001;20. https://doi.org/10.1097/00006454-200103000-00011.
Taillardet M, Haffar G, Mondière P, Asensio MJ, Pléau-Pison T, Burdin N, et al. Toll-like receptor agonists allow generation of long-lasting antipneumococcal humoral immunity in response to a plain polysaccharidic vaccine. J Infect Dis. 2010;202:470–9. https://doi.org/10.1086/653739.
Article
CAS
PubMed
Google Scholar
Olafsdottir TA, Lingnau K, Nagy E, Jonsdottir I. IC31®, a two-component novel adjuvant mixed with a conjugate vaccine enhances protective immunity against pneumococcal disease in neonatal mice. Scand J Immunol. 2009;69:194–202. https://doi.org/10.1111/j.1365-3083.2008.02225.x.
Article
CAS
PubMed
Google Scholar
Phipps JP, Haas KM. An Adjuvant That Increases Protective Antibody Responses to Polysaccharide Antigens and Enables Recall Responses. J Infect Dis. 2019;219:323–34. https://doi.org/10.1093/infdis/jiy506.
Article
CAS
PubMed
Google Scholar
Campos IB, Herd M, Moffitt KL, Lu YJ, Darrieux M, Malley R, et al. IL-17A and complement contribute to killing of pneumococci following immunization with a pneumococcal whole cell vaccine. Vaccine. 2017;35:1306–15. https://doi.org/10.1016/j.vaccine.2017.01.030.
Article
CAS
PubMed
Google Scholar
Lu YJ, Yadav P, Clements JD, Forte S, Srivastava A, Thompson CM, et al. Options for inactivation, adjuvant, and route of topical administration of a killed, unencapsulated pneumococcal whole-cell vaccine. Clin Vaccine Immunol. 2010;17:1005–12. https://doi.org/10.1128/CVI.00036-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu YJ, Leite L, Gonçalves VM, de Oliveira Dias W, Liberman C, Fratelli F, et al. GMP-grade pneumococcal whole-cell vaccine injected subcutaneously protects mice from nasopharyngeal colonization and fatal aspiration-sepsis. Vaccine. 2010;28:7468–75. https://doi.org/10.1016/j.vaccine.2010.09.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Tettelin H, et al. Panproteome-wide analysis of antibody responses to whole cell pneumococcal vaccination. Elife. 2018;7:e37015. https://doi.org/10.7554/eLife.37015.
Article
PubMed
PubMed Central
Google Scholar
Keech CA, Morrison R, Anderson P, Tate A, Flores J, Goldblatt D, et al. Trial to Evaluate the Safety and Immunogenicity of Inactivated Streptococcus pneumoniae Whole-cell Vaccine in Adults. Pediatr Infect Dis J. 2019) Epub ahead of print. https://doi.org/10.1097/INF.0000000000002567.
Pichichero ME, Khan MN, Xu Q. Next generation protein based Streptococcus pneumoniae vaccines. Hum Vaccines Immunother. 2016;12:194–205. https://doi.org/10.1080/21645515.2015.1052198.
Article
Google Scholar
Pichichero ME. Pneumococcal whole-cell and protein-based vaccines: changing the paradigm. Expert Rev Vaccines. 2017;16:1181–90. https://doi.org/10.1080/14760584.2017.1393335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagousi T, Basdeki P, Routsias J, Spoulou V. Novel protein-based pneumococcal vaccines: Assessing the use of distinct protein fragments instead of full-length proteins as vaccine antigens. Vaccines. 2019;7:1–18. https://doi.org/10.3390/vaccines7010009.
Article
CAS
Google Scholar
Masomian M, Ahmad Z, Gew LT, Poh CL. Development of next generation streptococcus pneumoniae vaccines conferring broad protection. Vaccines. 2020;8. https://doi.org/10.3390/vaccines8010132.
Kawai K, Gebremeskel BG, Acosta CJ. Systematic review of incidence and complications of herpes zoster: Towards a global perspective. BMJ Open. 2014;4:e004833. https://doi.org/10.1136/bmjopen-2014-004833.
Article
PubMed
PubMed Central
Google Scholar
Johnson RW, Rice ASC. Postherpetic neuralgia. N Engl J Med. 2014;371:1526–33. https://doi.org/10.1056/NEJMcp1403062.
Article
CAS
PubMed
Google Scholar
Opstelten W, McElhaney J, Weinberger B, Oaklander AL, Johnson RW. The impact of varicella zoster virus: Chronic pain. J Clin Virol. 2010;48:S8–S13. https://doi.org/10.1016/S1386-6532(10)70003-2.
Article
PubMed
Google Scholar
Yawn BP, Gilden D. The global epidemiology of herpes zoster. Neurology. 2013;81:928–30. https://doi.org/10.1212/wnl.0b013e3182a3516e.
Article
PubMed
PubMed Central
Google Scholar
Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing Adjuvant Systems. Expert Rev Vaccines. 2011. https://doi.org/10.1586/erv.11.29.
Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21. https://doi.org/10.1016/j.smim.2018.05.001.
Article
CAS
PubMed
Google Scholar
Detienne S, Welsby I, Collignon C, Wouters S, Coccia M, Delhaye S, et al. Central role of CD169+ lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci Rep. 2016;6:1–14. https://doi.org/10.1038/srep39475.
Article
CAS
Google Scholar
Welsby I, Detienne S, N’Kuli F, Thomas S, Wouters S, Bechtold V, et al. Lysosome-dependent activation of human dendritic cells by the vaccine adjuvant QS-21. Front Immunol. 2017;7:663. https://doi.org/10.3389/fimmu.2016.00663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lacaille-Dubois MA. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: A review. Phytomedicine. 2019;60. https://doi.org/10.1016/j.phymed.2019.152905.
Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017;16:55–63. https://doi.org/10.1080/14760584.2016.1213632.
Article
CAS
PubMed
Google Scholar
Levin MJ, Oxman MN, Zhang JH, Johnson GR, Stanley H, Hayward AR, et al. Varicella-Zoster Virus–Specific Immune Responses in Elderly Recipients of a Herpes Zoster Vaccine. J Infect Dis. 2008;197:825–35. https://doi.org/10.1086/528696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz TF, Volpe S, Catteau G, Chlibek R, David MP, Richardus JH, et al. Persistence of immune response to an adjuvanted varicella-zoster virus subunit vaccine for up to year nine in older adults. Hum Vaccines Immunother. 2018;14:1370–7. https://doi.org/10.1080/21645515.2018.1442162.
Article
Google Scholar
Chlibek R, Bayas JM, Collins H, De La Pinta MLR, Ledent E, Mols JF, et al. Safety and immunogenicity of an ASO1 -adjuvanted varicella-zoster virus subunit candidate vaccine against herpes zoster in adults ≥50 years of age. J Infect Dis. 2013;208:1953–61. https://doi.org/10.1093/infdis/jit365.
Article
CAS
PubMed
Google Scholar
Chlibek R, Smetana J, Pauksens K, Rombo L, Van den Hoek JAR, Richardus JH, et al. Safety and immunogenicity of three different formulations of an adjuvanted varicella-zoster virus subunit candidate vaccine in older adults: A phase II, randomized, controlled study. Vaccine. 2014;32:1745–53. https://doi.org/10.1016/j.vaccine.2014.01.019.
Article
CAS
PubMed
Google Scholar
Leroux-Roels I, Leroux-Roels G, Clement F, Vandepapelière P, Vassilev V, Ledent E, et al. A phase 1/2 clinical trial evaluating safety and immunogenicity of a varicella zoster glycoprotein e subunit vaccine candidate in young and older adults. J Infect Dis. 2012;206:1280–90. https://doi.org/10.1093/infdis/jis497.
Article
CAS
PubMed
Google Scholar
Cunningham AL, Heineman TC, Lal H, Godeaux O, Chlibek R, Hwang SJ, et al. Immune responses to a recombinant glycoprotein e herpes zoster vaccine in adults aged 50 years or older. J Infect Dis. 2018;217:1750–60. https://doi.org/10.1093/infdis/jiy095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levin MJ, Kroehl ME, Johnson MJ, Hammes A, Reinhold D, Lang N, et al. Th1 memory differentiates recombinant from live herpes zoster vaccines. J Clin Invest. 2018;128:4429–40. https://doi.org/10.1172/JCI121484.
Article
PubMed
PubMed Central
Google Scholar
Schmid DS, Miao C, Leung J, Johnson M, Weinberg A, Levin MJ. Comparative Antibody Responses to the Live-Attenuated and Recombinant Herpes Zoster Vaccines. J Virol. 2021;95. https://doi.org/10.1128/jvi.00240-21.
Oxman MN, Levin MJ, Johnson GR, Schmader KE, Straus SE, Gelb LD, et al. A Vaccine to Prevent Herpse Zoster and Postherpetic Neuralgia in Older Adults. N Engl J Med. 2005;352:2271–84.
Article
CAS
PubMed
Google Scholar
Schmader KE, Levin MJ, Gnann JW, McNeil SA, Vesikari T, Betts RF, et al. Efficacy, safety, and tolerability of herpes zoster vaccine in persons aged 50-59 years. Clin Infect Dis. 2012;54:922–8. https://doi.org/10.1093/cid/cir970.
Article
PubMed
PubMed Central
Google Scholar
Morrison VA, Johnson GR, Schmader KE, Levin MJ, Zhang JH, Looney DJ, et al. Long-term persistence of zoster vaccine efficacy. Clin Infect Dis. 2015;60:900–9. https://doi.org/10.1093/cid/ciu918.
Article
PubMed
Google Scholar
Weinberg A, Popmihajlov Z, Schmader KE, Johnson MJ, Caldas Y, Salazar AT, et al. Persistence of Varicella-Zoster Virus Cell-Mediated Immunity after the Administration of a Second Dose of Live Herpes Zoster Vaccine. J Infect Dis. 2019;219:335–8. https://doi.org/10.1093/infdis/jiy514.
Article
CAS
PubMed
Google Scholar
Cunningham AL, Lal H, Kovac M, Chlibek R, Hwang SJ, Díez-Domingo J, et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N Engl J Med. 2016;375:1019–32. https://doi.org/10.1056/NEJMoa1603800.
Article
CAS
PubMed
Google Scholar
Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang SJ, et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 2015;372:2087–96. https://doi.org/10.1056/NEJMoa1501184.
Article
PubMed
Google Scholar
Boutry C, Hastie A, Diez-Domingo J, Tinoco JC, Yu C-J, Andrews C, et al. The Adjuvanted Recombinant Zoster Vaccine Confers Long-term Protection Against Herpes Zoster: Interim Results of an Extension Study of the Pivotal Phase III Clinical Trials (ZOE-50 and ZOE-70). Clin Infect Dis. 2021. https://doi.org/10.1093/cid/ciab629.
Curran D, Kim JH, Matthews S, Dessart C, Levin MJ, Oostvogels L, et al. Recombinant Zoster Vaccine Is Efficacious and Safe in Frail Individuals. J Am Geriatr Soc. 2021;69:744–52. https://doi.org/10.1111/jgs.16917.
Article
PubMed
Google Scholar
Izurieta HS, Wu X, Forshee R, Lu Y, Sung H-M, Ehrlich Agger P, et al. Recombinant Zoster Vaccine (Shingrix) real-world effectiveness in the first two years post- licensure. Clin Infect Dis. 2021:ciab125. https://doi.org/10.1093/cid/ciab125.
Vink P, Ramon Torrell JM, Sanchez Fructuoso A, Kim S-J, Kim S, Zaltzman J, et al. Immunogenicity and Safety of the Adjuvanted Recombinant Zoster Vaccine in Chronically Immunosuppressed Adults Following Renal Transplant: a Phase III, Randomized Clinical Trial. Clin Infect Dis. 2019;70:181–90. https://doi.org/10.1093/cid/ciz177.
Article
CAS
PubMed Central
Google Scholar
Berkowitz EM, Moyle G, Stellbrink HJ, Schürmann D, Kegg S, Stoll M, et al. Safety and immunogenicity of an adjuvanted herpes zoster subunit candidate vaccine in HIV-infected adults: A phase 1/2a randomized, placebo-controlled study. J Infect Dis. 2015;211:1279–87. https://doi.org/10.1093/infdis/jiu606.
Article
CAS
PubMed
Google Scholar
Dagnew AF, Ilhan O, Lee WS, Woszczyk D, Kwak JY, Bowcock S, et al. Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in adults with haematological malignancies: a phase 3, randomised, clinical trial and post-hoc efficacy analysis. Lancet Infect Dis. 2019;19:988–1000. https://doi.org/10.1016/S1473-3099(19)30163-X.
Article
CAS
PubMed
Google Scholar
Winston DJ, Mullane KM, Cornely OA, Boeckh MJ, Brown JW, Pergam SA, et al. Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: an international, multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391:2116–27. https://doi.org/10.1016/S0140-6736(18)30631-7.
Article
PubMed
Google Scholar
Booth A, Reed AB, Ponzo S, Yassaee A, Aral M, Plans D, et al. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS One. 2021;16:e0247461. https://doi.org/10.1371/journal.pone.0247461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pijls BG, Jolani S, Atherley A, Derckx RT, Dijkstra JIR, Franssen GHL, et al. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: A meta-analysis of 59 studies. BMJ Open. 2021;11:e044640. https://doi.org/10.1136/bmjopen-2020-044640.
Article
PubMed
Google Scholar
Flook M, Jackson C, Vasileiou E, Simpson CR, Muckian MD, Agrawal U, et al. Informing the public health response to COVID-19: a systematic review of risk factors for disease, severity, and mortality. BMC Infect Dis. 2021;21:342. https://doi.org/10.1186/s12879-021-05992-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korompoki E, Gavriatopoulou M, Hicklen RS, Ntanasis-Stathopoulos I, Kastritis E, Fotiou D, et al. Epidemiology and organ specific sequelae of post-acute COVID19: A narrative review. J Infect. 2021. https://doi.org/10.1016/j.jinf.2021.05.004.
Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601–15. https://doi.org/10.1038/s41591-021-01283-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
World Health Organisation. COVID-19 vaccine tracker and landscape. (2021) Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
Google Scholar
McDonald I, Murray SM, Reynolds CJ, Altmann DM, Boyton RJ. Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. npj Vaccines. 2021:6, 1–14. https://doi.org/10.1038/s41541-021-00336-1.
Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N Engl J Med. 2020;383:2427–38. https://doi.org/10.1056/nejmoa2028436.
Article
CAS
PubMed
Google Scholar
Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med. 2020;383:2439–50. https://doi.org/10.1056/nejmoa2027906.
Article
CAS
PubMed
Google Scholar
Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021:1–15. https://doi.org/10.1056/nejmoa2101544.
Ramasamy MN, Aley PK, Angus B, Babbage G, Belij-Rammerstorfer S, Berry L, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults ( COV002 ): a single-blind , randomised , controlled , phase 2 / 3 trial. Lancet. 2021;396:1979–93.
Article
PubMed
Google Scholar
Collier DA, Ferreira IATM, Kotagiri P, Datir RP, Lim EY, Touizer E, et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature. 2021;596:417–22. https://doi.org/10.1038/s41586-021-03739-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384:403–16. https://doi.org/10.1056/nejmoa2035389.
Article
CAS
PubMed
Google Scholar
Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383:2603–15. https://doi.org/10.1056/nejmoa2034577.
Article
CAS
PubMed
Google Scholar
European Medicines Agency. Assessment report: COVID-19 Vaccine AstraZeneca. (2021) Available at: https://www.ema.europa.eu/en/documents/assessment-report/vaxzevria-previously-covid-19-vaccine-astrazeneca-epar-public-assessment-report_en.pdf
Google Scholar
Shimabukuro TT, Cole M, Su JR. Reports of Anaphylaxis after Receipt of mRNA COVID-19 Vaccines in the US-December 14, 2020-January 18, 2021. JAMA - J Am Med Assoc. 2021;325:1101–2. https://doi.org/10.1001/jama.2021.1967.
Article
CAS
Google Scholar
Banerji A, Wickner PG, Saff R, Stone CA, Robinson LB, Long AA, et al. mRNA Vaccines to Prevent COVID-19 Disease and Reported Allergic Reactions: Current Evidence and Suggested Approach. J Allergy Clin Immunol Pract. 2021;9:1423–37. https://doi.org/10.1016/j.jaip.2020.12.047.
Article
PubMed
Google Scholar
Cines DB, Bussel JB. SARS-CoV-2 Vaccine–Induced Immune Thrombotic Thrombocytopenia. N Engl J Med. 2021. https://doi.org/10.1056/nejme2106315.
Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, et al. Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol. 2021;92134:6–10. https://doi.org/10.1001/jamacardio.2021.2833.
Article
Google Scholar
European Medicines Agency. Assessment report: COVID-19 Vaccine Moderna. (2021) Available at: https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf. Accessed 2 Aug 2021.
Voysey M, Ann S, Clemens C, Madhi SA, Weckx LY, Folegatti PM, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine ( AZD1222 ) against SARS-CoV-2 : an interim analysis of four randomised controlled trials in Brazil , South Africa , and the UK. Lancet. 2020:1–13.
News Releases. Investigational AstraZeneca vaccine prevents COVID-19. (2021) Available at: https://www.nih.gov/news-events/news-releases/investigational-astrazeneca-vaccine-prevents-covid-19. Accessed 4 April 2021.
Hall VJ, Foulkes S, Saei A, Andrews N, Oguti B, Charlett A, et al. Effectiveness of BNT162b2 mRNA Vaccine Against Infection and COVID-19 Vaccine Coverage in Healthcare Workers in England, Multicentre Prospective Cohort Study (the SIREN Study). SSRN Electron J. 2021. https://doi.org/10.2139/ssrn.3790399.
Thompson MG, Burgess JL, Naleway AL, Tyner HL, Yoon SK, Meece J, et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers — Eight U.S. Locations, December 2020–March. MMWR Morb Mortal Wkly Rep. 2021;70:495–500. https://doi.org/10.15585/mmwr.mm7013e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021;397:1819–29. https://doi.org/10.1016/S0140-6736(21)00947-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moutsen-Helms IR, Emborg H-D, Nielsen J, Finderup Nielsen K, Grove Krause T, Mølbak K, et al. Vaccine effectiveness after 1st and 2nd dose of the BNT162b2 mRNA Covid-19 Vaccine in long-term care facility residents and healthcare workers – a Danish cohort study. medRxiv. 2021. https://doi.org/10.1101/2021.03.08.21252200.
Mazagatos C, Monge S, Olmedo C, Vega L, Gallego P, Martin-Merino E, et al. Effectiveness of mRNA COVID-19 vaccines in preventing SARS-CoV-2 infections and COVID-19 hospitalisations and deaths in elderly long-term care facility residents, Spain, weeks 53 2020 to 13 2021. Eurosurveillance. 2021;26:1–6. https://doi.org/10.2807/1560-7917.ES.2021.26.24.2100452.
Article
Google Scholar
Harder T, Koch J, Vygen-Bonnet S, Külper-Schiek W, Pilic A, Reda S, et al. Efficacy and effectiveness of COVID-19 vaccines against SARS-CoV-2 infection: interim results of a living systematic review, 1 January to 14 May 2021. Euro Surveill. 2021;26:1–9. https://doi.org/10.2807/1560-7917.ES.2021.26.28.2100563.
Article
Google Scholar
Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021;19:1–11. https://doi.org/10.1016/S0140-6736(21)00432-3.
Article
Google Scholar
Parry H, Bruton R, Stephens C, Brown K, Amirthalingam G, Hallis B, et al. Extended interval BNT162b2 vaccination enhances peak antibody generation in older people. medRxiv. 2021. https://doi.org/10.1101/2021.05.15.21257017.
Lewis D. The case is growing for mix-and-match COVID vaccines. Nature. 2021;595:344–5.
Article
CAS
PubMed
Google Scholar
Doria-Rose NA, Suthar MS. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. N Engl J Med. 2021;384.
Mateus J, Dan JM, Zhang Z, Moderbacher CR, Lammers M, Goodwin B, Sette A, Crotty S, Weiskopf D. Low dose mRNA-1273 COVID-19 vaccine generates durable T cell memory and antibodies enhanced by pre-existing crossreactive T cell memory. medRxiv (2021) 2021.06.30.21259787. Available at: https://www.medrxiv.org/content/10.1101/2021.06.30.21259787v1, https://www.medrxiv.org/content/10.1101/2021.06.30.21259787v1.abstract
Ministry of Health. Decline in Vaccine Effectiveness Against Infection and Symptomatic Illness. (2021) Available at: https://www.gov.il/en/departments/news/05072021-03. Accessed 26 July 2021.
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 2021;385:585–94. https://doi.org/10.1056/nejmoa2108891.
Article
CAS
PubMed
Google Scholar
Massare MJ, Patel N, Zou B, Maciejewski S, Flores R, Guebre-Xabier M, et al. Combination Respiratory Vaccine Containing Recombinant SARS-CoV-2 Spike and Quadrivalent Seasonal Influenza Hemagglutinin Nanoparticles with Matrix-M Adjuvan. bioRxiv. 2021. https://doi.org/10.1101/2021.05.05.442782.
Kaml M, Weiskirchner I, Keller M, Luft T, Hoster E, Hasford J, et al. Booster vaccination in the elderly: their success depends on the vaccine type applied earlier in life as well as on pre-vaccination antibody titers. Vaccine. 2006;24:6808–11.
Article
CAS
PubMed
Google Scholar
Weinberger B, Schirmer M, Matteucci GR, Siebert U, Fuchs D, Grubeck-Loebenstein B. Recall responses to tetanus and diphtheria vaccination are frequently insufficient in elderly persons. PLoSOne. 2013;8:e82967.
Article
Google Scholar
Bayas JM, Vilella A, Bertran MJ, Vidal J, Batalla J, Asenjo MA, et al. Immunogenicity and reactogenicity of the adult tetanus-diphtheria vaccine: How many doses are necessary? Epidemiol Infect. 2001;127:451–60. https://doi.org/10.1017/S095026880100629X.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Damme P, Burgess M. Immunogenicity of a combined diphtheria-tetanus-acellular pertussis vaccine in adults. Vaccine. 2004;22:305–8. https://doi.org/10.1016/j.vaccine.2003.08.012.
Article
CAS
PubMed
Google Scholar
Launay O, Toneatti C, Bernède C, Njamkepo E, Petitprez K, Leblond A, et al. Antibodies to tetanus, diphtheria and pertussis among healthy adults vaccinated according to the French vaccination recommendations. Hum Vaccin. 2009;5:341–6. https://doi.org/10.4161/hv.5.5.7575.
Article
PubMed
Google Scholar
Grasse M, Meryk A, Schirmer M, Grubeck-Loebenstein B, Weinberger B. Booster vaccination against tetanus and diphtheria: insufficient protection against diphtheria in young and elderly adults. Immun Ageing. 2016;13:26. https://doi.org/10.1186/s12979-016-0081-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinberger B, Keller M, Putzer C, Breitenberger D, Koller B, Fiegl S, et al. Protection against Tetanus and Diphtheria in Europe: The impact of age, gender and country of origin based on data from the MARK-AGE Study. Exp Gerontol. 2018;105:109–12. https://doi.org/10.1016/j.exger.2017.08.037.
Article
PubMed
Google Scholar
Weinberger B. Adult vaccination against tetanus and diphtheria: the European perspective. Clin Exp Immunol. 2017;187:93–9. https://doi.org/10.1111/cei.12822.
Article
CAS
PubMed
Google Scholar
Weinberger B, Keller M, Fischer KH, Stiasny K, Neuner C, Heinz FX, et al. Decreased antibody titers and booster responses in tick-borne encephalitis vaccinees aged 50-90 years. Vaccine. 2010. https://doi.org/10.1016/j.vaccine.2010.03.024.
Stiasny K, Aberle JH, Keller M, Grubeck-Loebenstein B, Heinz FX. Age affects quantity but not quality of antibody responses after vaccination with an inactivated flavivirus vaccine against tick-borne encephalitis. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0034145.
Ridda I, Yin JK, King C, Raina MacIntyre C, McIntyre P. The importance of pertussis in older adults: a growing case for reviewing vaccination strategy in the elderly. Vaccine. 2012;30:6745–52. https://doi.org/10.1016/j.vaccine.2012.08.079.
Article
PubMed
Google Scholar
Gil A, Oyagüez I, Carrasco P, González A. Hospital admissions for pertussis in Spain, 1995-1998. Vaccine. 2001;19:4791–4. https://doi.org/10.1016/s0264-410x(01)00213-4.
Article
CAS
PubMed
Google Scholar
Rendi-Wagner P, Tobias J, Moerman L, Goren S, Bassal R, Green M, et al. The seroepidemiology of Bordetella pertussis in Israel--Estimate of incidence of infection. Vaccine. 2010;28:3285–90. https://doi.org/10.1016/j.vaccine.2010.02.104.
Article
PubMed
Google Scholar
Halperin SA, Scheifele D, De Serres G, Noya F, Meekison W, Zickler P, et al. Immune responses in adults to revaccination with a tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine 10 years after a previous dose. Vaccine. 2012;30:974–82. https://doi.org/10.1016/j.vaccine.2011.11.035.
Article
CAS
PubMed
Google Scholar
Taylor DN, Pollard RA, Blake PA. Typhoid in the United States and the risk to the international traveler. J Infect Dis. 1983;148:599–602. https://doi.org/10.1093/infdis/148.3.599.
Article
CAS
PubMed
Google Scholar
Hennessy S, Liu Z, Tsai TF, Strom BL, Wan CM, Liu HL, et al. Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): a case-control study. Lancet (London, England). 1996;347:1583–6. https://doi.org/10.1016/s0140-6736(96)91075-2.
Article
CAS
Google Scholar
Jilg W. “Vaccines for Older Travelers.,” in Interdisciplinary topics in gerontology and geriatrics (Interdiscip Top Gerontol Geriatr). 2020;43:158–181.
Ecarnot F, Maggi S, Michel J-P, Veronese N, Rossanese A. Vaccines and Senior Travellers. Front Aging. 2021;2:1–17. https://doi.org/10.3389/fragi.2021.677907.
Article
Google Scholar
Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci U S A. 2003;100:15053–8. https://doi.org/10.1073/pnas.2433717100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haynes L. The effect of aging on cognate function and development of immune memory. Curr Opin Immunol. 2005;17:476–9. https://doi.org/10.1016/j.coi.2005.07.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolters B, Junge U, Dziuba S, Roggendorf M. Immunogenicity of combined hepatitis A and B vaccine in elderly persons. Vaccine. 2003;21:3623–8. https://doi.org/10.1016/S0264-410X(03)00399-2.
Article
CAS
PubMed
Google Scholar
Fisman DN, Agrawal D, Leder K. The effect of age on immunologic response to recombinant hepatitis B vaccine: A meta-analysis. Clin Infect Dis. 2002;35:1368–75. https://doi.org/10.1086/344271.
Article
PubMed
Google Scholar
Stoffel M, Lievens M, Dieussaert I, Martin I, André F. Immunogenicity of TwinrixTM in older adults: A critical analysis. Expert Rev Vaccines. 2003;2:9–14. https://doi.org/10.1586/14760584.2.1.9.
Article
CAS
PubMed
Google Scholar
Weinberger B, Haks MC, de Paus RA, Ottenhoff THM, Bauer T, Grubeck-Loebenstein B. Impaired immune response to primary but not to booster vaccination against hepatitis B in older adults. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.01035.
Rafferty E, Duclos P, Yactayo S, Schuster M. Risk of yellow fever vaccine-associated viscerotropic disease among the elderly: a systematic review. Vaccine. 2013;31:5798–805. https://doi.org/10.1016/j.vaccine.2013.09.030.
Article
PubMed
Google Scholar
Poolman JT, Anderson AS. Escherichia coli and Staphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations. Expert Rev Vaccines. 2018;17:607–18. https://doi.org/10.1080/14760584.2018.1488590.
Article
CAS
PubMed
Google Scholar
Esposito S, Principi N. Norovirus Vaccine: Priorities for Future Research and Development. Front Immunol. 2020;11:1383. https://doi.org/10.3389/fimmu.2020.01383.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson AS, Scully IL, Pride MW, Jansen KU. Vaccination against Nosocomial Infections in Elderly Adults. Interdiscip Top Gerontol Geriatr. 2020;43:193–217. https://doi.org/10.1159/000504481.
Article
PubMed
Google Scholar
Fleming DM, Taylor RJ, Lustig RL, Schuck-Paim C, Haguinet F, Webb DJ, et al. Modelling estimates of the burden of Respiratory Syncytial virus infection in adults and the elderly in the United Kingdom. BMC Infect Dis. 2015;15. https://doi.org/10.1186/s12879-015-1218-z.
Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC, Horsley N, et al. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infect Dis. 2018;18:e295–311. https://doi.org/10.1016/S1473-3099(18)30292-5.
Article
PubMed
Google Scholar